Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 476))

Abstract

The area of energy harvesting using vibration sources has attracted numerous researchers over the past few years. It has a great potential to have extended lifetime of low-power devices such as wireless sensors, portable devices, and wearable devices. The wireless devices in today’s date require batteries which have a limited lifetime and needs to be replaced with time. In case of wireless sensors that work in harsh environment, it is nearly impossible to replace batteries. The concept of energy harvesting aims to develop devices that do not require replaceable batteries. This is done by converting available energy from the environment into electrical energy to power wireless devices. This paper is focused on piezoelectric energy harvesting. First, different approaches to harvest energy have been discussed in brief. After that piezoelectric energy harvesting has been discussed in detail. Different components of piezoelectric energy harvesting circuit namely transducers, rectifiers, and storage devices have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ulukus, K. Huang, R. Zhang, N. B. Mehta, and L. Tassiulas, “Special issue on energy harvesting in wireless networks,” J. Commun. Networks, vol. 14, no. 2, pp. 115–120, 2012.

    Google Scholar 

  2. R. J. M. Vullers and R. Van Schaijk, “Energy Harvesting for Autonomous Wireless Sensor Networks,” IEEE SOLID-STATE CIRCUITS Mag., pp. 29–38, 2010.

    Google Scholar 

  3. S. Basagni, M. Y. Naderi, and C. Petrioli, “Wireless Sensor Networks with Energy Harvesting,” semantic scholar, pp. 7–11, 2013.

    Google Scholar 

  4. Y. Qiu, C. Van Liempd, P. G. Blanken, and C. Van Hoof, “5 uW-to-10 mW Input Power Range Inductive Boost Converter for Indoor Photovoltaic Energy Harvesting with Integrated Maximum Power Point Tracking,” Solid-State Circuits, pp. 300–301, 2011.

    Google Scholar 

  5. P. B. P.T.V. Bhuvaneswari, R. Balakuma, V. Vaidehi, “Solar Energy Harvesting For Wireless Sensor Networks,” First Int. Conf. Comput. Intell. Commun. Syst. Networks Sol., 2009.

    Google Scholar 

  6. G. Sebald, S. Pruvost, D. Guyomar, G. Sebald, D. Guyomar, and A. Agbossou, “On thermoelectric and pyroelectric energy,” SMARTMATERIALS Struct. Sci., 2009.

    Google Scholar 

  7. D. Patel, R. Mehta, R. Patwa, S. Thapar, and S. Chopra, “RF Energy Harvesting,” ijett journal, vol. 16, no. 8, pp. 382–385, 2014.

    Google Scholar 

  8. F. T. Fisher, “Energy harvesting vibration sources for Microsystems applications,” Meas. Sci. Technol., vol. 17, no. 12, 2006.

    Google Scholar 

  9. A. Marin, J. Turner, D. Sam, S. R. Anton, and H. A. Sodano, “A micro electromagnetic generator for vibration energy harvesting,” J. of Micromechanics and microengineering, vol. 17, pp. 1257–1267, 2007.

    Google Scholar 

  10. S. Chalasani and J. M. Conrad, “A Survey of Energy Harvesting Sources for Embedded Systems,” IEEE Southeast Con, pp. 442–447, 2008.

    Google Scholar 

  11. T. Dikshit, D. Shrivastava, A. Gorey, A. Gupta, and P. Parandkar, “Energy Harvesting via Piezoelectricity,” Int. J. Inf. Technol., vol. 2, no. 2, pp. 265–270, 2010.

    Google Scholar 

  12. S. M. Taware and S. P. Deshmukh, “A Review of Energy Harvesting From Piezoelectric Materials,” IOSR J. Mech. Civ. Eng., pp. 43–50, 2013.

    Google Scholar 

  13. D. Kumar, P. Chaturvedi, and N. Jejurikar, “Piezoelectric Energy Harvester Design and Power Conditioning,” IEEE Students’ Conf. Electr. Electron. Comput. Sci. Piezoelectric, pp. 1–6, 2014.

    Google Scholar 

  14. J. Z. Zhengbao Yang, “Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting,” Elsevier, vol. 122, pp. 321–329, 2016.

    Google Scholar 

  15. H. Kim, S. Priya, H. Stephanou, and K. Uchino, “Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 9, pp. 1851–1859.

    Google Scholar 

  16. P. W. S. Roundy, “A piezoelectric vibration based generator for wireless electronics,” Smart Mater. Struct., 2004.

    Google Scholar 

  17. M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, and R. Puers, “Fabrication, modeling and characterization of MEMS piezoelectric vibration harvesters,” Sensors and Actuators- Elsevier, vol. 146, pp. 380–386, 2008.

    Google Scholar 

  18. Q. Wang, Z. P. Cao, and H. Kuwano, “Metal-based piezoelectric energy harvesters by direct deposition of PZT thick films on stainless steel,” IET Micro Nano Lett., vol. 7, pp. 1158–1161, 2012.

    Google Scholar 

  19. X. Wang, J. Zhou, J. Song, J. Liu, and N. Xu, “Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire,” Nano Lett., 2006.

    Google Scholar 

  20. B. G. Xu, Z. Ren, P. Du, and W. Weng, “Polymer-Assisted Hydrothermal Synthesis of Single-Crystalline Nanowires,” Adv. Mater., no. 7, pp. 907–910, 2005.

    Google Scholar 

  21. X. Y. Zhang, X. Zhao, C. W. Lai, J. Wang, X. G. Tang, and J. Y. Dai, “nanowire arrays,” Appl. Phys. Lett., vol. 85, no. 18, pp. 4190–4192, 2004.

    Google Scholar 

  22. J. Rödel, K. G. Webber, R. Dittmer, W. Jo, and M. Kimura, “Feature Article Transferring lead-free piezoelectric ceramics into application,” J. Eur. Ceram. Soc., vol. 35, no. 6, pp. 1659–1681, 2015.

    Google Scholar 

  23. G. N. Wahied G. Ali, “Design Considerations for Piezoelectric Energy Harvesting Systems,” Eng. Technol., 2012.

    Google Scholar 

  24. A. Townley, “Vibrational Energy Harvesting Using MEMS Piezoelectric Generators,” Citeseer, 2009.

    Google Scholar 

  25. S.-J. Y. Min-Gyu Kang, Woo-Suk Jung, Chong-Yun Kang, “Recent Progress on PZT Based Piezoelectric Energy,” Actuators, 2016.

    Google Scholar 

  26. M. A. L. Ahmad and H. N. Alshareef, “Modeling the Power Output of Piezoelectric Energy Harvesters,” J. Electron. Mater., vol. 40, no. 7, 2011.

    Google Scholar 

  27. H. A. Kim and S. Bowen, “Piezoelectric and ferroelectric materials and structures for energy harvesting applications,” Energy Environ. Sci, vol. 320963, no. 320963, 2014.

    Google Scholar 

  28. S. W. Ibrahim and W. G. Ali, “Power Enhancement for Piezoelectric Energy Harvester,” Proc. World Congr. Eng., vol. II, pp. 6–11, 2012.

    Google Scholar 

  29. M. Robert C. Genesi, Sterling, “Integrated full wave diode bridge rectifier,” United States Pat., 1977.

    Google Scholar 

  30. A. Mustapha, N. M. Ali, and K. S. Leong, “Piezoelectric Microgenerator Rectifying Circuit Simulation using LTspice,” Proc. Second Intl. Conf. Adv. Electron. Devices Circuits, pp. 978–981, 2013.

    Google Scholar 

  31. T. Kashiwao, I. Izadgoshasb, Y. Yan, and M. Deguchi, “Optimization of rectifier circuits for a vibration energy harvesting system using a macrofiber composite piezoelectric element,” Microelectronics J., vol. 54, pp. 109–115, 2016.

    Google Scholar 

  32. S.-G. L. Xuan-Dien Do, Chang-Jin Jeong, Huy-Hieu Nguyen, Seok-Kyun Han, “A High Efficiency Piezoelectric Energy Harvesting System,” IEEE, pp. 389–392, 2011.

    Google Scholar 

  33. Carl Blake, Alberto Guerra “Schottky diodes vs. FET synchronous,” Electronics Engineer, 2000.

    Google Scholar 

  34. S. S. P. Baby, R. S. Edward and C. A. A. Allwyn, “Performance Analysis of an Efficient Active Rectifier for Powering LEDs using Piezoelectric Energy Harvesting Systems,” 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, 2013, pp. 376–380.

    Google Scholar 

  35. C Chukwuka, KA Folly, “Batteries and supercapacitors.” Power Engineering Society Conference and Exposition in Africa (PowerAfrica), 2012 IEEE. IEEE, 2012.

    Google Scholar 

  36. N. Khan, N. Mariun, M. Zaki and L. Dinesh, “Transient analysis of pulsed charging in supercapacitors,” 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), Kuala Lumpur, 2000, pp. 193–199 vol.3.

    Google Scholar 

  37. Z. Li and F. Wu, “Diagnostic Identification of Self-Discharge Mechanisms for Carbon-Based Supercapacitors with High Energy Density,” 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, 2011, pp. 1–5.

    Google Scholar 

  38. M. M. R Caliò, UB Rongala, D Camboni, “Piezoelectric Energy Harvesting Solutions,” sensors, pp. 4755–4790, 2014.

    Google Scholar 

  39. M. K. Stoj, M. R. Kosanovi, and L. R. Golubovi, “Power Management and Energy Harvesting Techniques for Wireless Sensor Nodes,” Telecommun. Mod. Satell. Cable, Broadcast. Serv., 2009.

    Google Scholar 

  40. S. Kim, H. Park, S. Kim, H. C. Wikle, J. Park, and D. Kim, “Comparison of MEMS PZT Cantilevers Based on d 31 and d 33 Modes for Vibration Energy Harvesting,” J. MICROELECTROMECHANICAL Syst., vol. 22, no. 1, pp. 26–33, 2013.

    Google Scholar 

  41. J. Eliasson, “Low-Power Design Methodologies for Embedded Internet Systems,” Dep. Comput. Sci. Electr. Eng. Luleå Univ. Technol., 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oshin Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, O., Sharma, S., Preeti, Kaur, P. (2019). Piezoelectric Energy Harvesting: A Developing Scope for Low-Power Applications. In: Nath, V., Mandal, J. (eds) Proceeding of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017). Lecture Notes in Electrical Engineering, vol 476. Springer, Singapore. https://doi.org/10.1007/978-981-10-8234-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8234-4_61

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8233-7

  • Online ISBN: 978-981-10-8234-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics