Skip to main content

Sensitivity Analysis of Near-Wellbore Fracture Curving in Horizontal Well

  • Conference paper
  • First Online:
Proceedings of the International Field Exploration and Development Conference 2017

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

  • 2342 Accesses

Abstract

A three-dimensional (3D) model is presented for initiation and propagation of hydraulic fracture in near-wellbore region of horizontal well, investigating the sensitivity of fracture curving to relevant mechanical and reservoir properties, far-field stress conditions, operating data and azimuth angle of horizontal wellbore. The new model is based on a fully coupled pressure/deformation extended finite element method (XFEM) capable of activating arbitrarily oriented discontinuities in both displacements and pore pressure, considering the flow of the fracturing fluid that enters and leaks through the fracture surfaces, the flow of the pore fluid within the pores, the rock deformation, and the fracture evolution. Also, the corresponding governing equations for each of the coupled processes, details of 3D model setup, and assumptions involved in near-wellbore hydraulic fracture curving within Abaqus are provided in this paper. Compared to other analytical or 2D numerical solutions, this methodology described here provides a way to quantify the magnitude of fracture radius of curvature and width variation along the turning fracture correlated to controlling parameters. Our results demonstrate that fracture initiates from non-ideal orientation may extends outwards and turns toward its preferred direction relative to the far-field stress as previously published experimental results. It is shown that both maximum horizontal in situ stress contrast and leakoff coefficient of fracture surfaces are negatively correlated to the radius of fracture curvature that as either of them increases, the radius of curvature will decrease. On the contrary, Young’s modulus, fluid viscosity, injection rate, and azimuth angle of horizontal wellbore are positively correlated to the radius of fracture curvature. Among these key parameters, the maximum horizontal in situ stress contrast plays the most important role and compared to viscous fluid, fracture curving is more sensitive to injection rate. The sensitivity of fracture curving radius to various properties obtained in this numerical procedure would allow operators to optimize the treatment design for proper fracture tortuosity remedy in the near-wellbore region of horizontal well in tight oil and gas reservoirs.

Copyright 2017, Shaanxi Petroleum Society.

This paper was prepared for presentation at the 2017 International Field Exploration and Development Conference in Chengdu, China, 21–22 September 2017.

This paper was selected for presentation by the IFEDC&IPPTC Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the IFEDC&IPPTC Committee and are subject to correction by the author(s). The material does not necessarily reflect any position of the IFEDC&IPPTC Committee, its members. Papers presented at the Conference are subject to publication review by Professional Committee of Petroleum Engineering of Shaanxi Petroleum Society. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of Shaanxi Petroleum Society is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of IFEDC&IPPTC. Contact email: paper@ifedc.org or paper@ipptc.org.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Rabaa W (1989) Experimental study of hydraulic fracture geometry initiated from horizontal wells. In: Proceedings of the SPE annual technical conference and exhibition, San Antonio, paper SPE 19720, 8–11 Oct 1989

    Google Scholar 

  2. Weng X (1993) Fracture initiation and propagation from deviated wellbores. In: Proceedings of the SPE annual technical conference and exhibition, Houston, 306, paper SPE 26597, Oct 1993

    Google Scholar 

  3. Aud WW, Wright TB, Cipolla CL, Harkrider JD, Hansen JT (1994) The effect of viscosity on near-wellbore tortuosity and premature screenouts. In: Proceedings of the SPE annual technical conference and exhibition, New Orleans, paper SPE 28492, 25–28 Sept 1994

    Google Scholar 

  4. Soliman MY, East L, Adams D (2008) Geomechanics aspects of multiple fracturing of horizontal and vertical wells. SPE Drill Complet 23:217–228

    Article  Google Scholar 

  5. Hallam SD, Last NC (1990) Geometry of hydraulic fractures from modestly deviated wellbores. J Pet Technol 43:742–748

    Article  Google Scholar 

  6. Zhang X, Jeffrey RG, Bunger AP, Thiercelin M (2011) Initiation and growth of a hydraulic fracture from a circular wellbore. Int J Rock Mech Mining Sci 48(6):984–995

    Article  Google Scholar 

  7. Zhang G-Q, Chen M (2005) Non planar propagation of hydraulic fracture near horizontal wellbore. Acta Pet Sinica 26(3):95–101

    Article  Google Scholar 

  8. Lecampion B, Abbas S, Prioul R (2013) Competition between transverse and axial hydraulic fractures in horizontal wells. In: Proceedings of SPE hydraulic fracturing technology conference, Woodlands, 4–6 Feb 2013

    Google Scholar 

  9. Sherman CS, Aarons LR, Morris JP, Johnson, Savitski AA, Geilikman MB (2015) Finite element modelling of curving hydraulic fractures and near-wellbore hydraulic fracture complexity. In Proceedings of the 49th US rock mechanics symposium/geomechanics symposium, San Francisco, 28 June–1 July 2015

    Google Scholar 

  10. Stanchits S, Surdi A, Gathogo P, Edelman E, Suarez-Rivera R (2014) Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements. Rock Mech Rock Eng 4(5):1521–1532

    Article  Google Scholar 

  11. Gordeliy E, Detournay E, Napier JAL (2010) Modeling of near-surface bowl-shaped fractures. In: Proceedings of the 44th U.S. rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, Salt Lake City, 27–30 June 2010

    Google Scholar 

  12. Bunger AP, Gordeliy E, Detournay E (2013) Comparison between laboratory experiment sand coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids. J Mech Phys Solids 61(7):1636–1654

    Article  Google Scholar 

  13. Abaqus User’s Manual (2014) Version 6.14, Dassault Systemes Corp., Providence, RI

    Google Scholar 

  14. Charlez PA (1997) Rock Mechanics, vol 2. Editions Technip, Petroleum Applications

    Google Scholar 

  15. Ortiz M, Pandolfi A (1999) Finite-Deformation Irreversible Cohesive Elements For Three-Dimensional Crack-Propagation Analysis. Int. J. Numer. Meth. Engng. 44:1267–1282

    Article  Google Scholar 

  16. Bunger AP, Detournay E (2008) Experimental validation of the tip asymptotics for a fluid-driven crack. J Mech Phys Solids 11:3101–3115

    Article  Google Scholar 

  17. Hu J, Garagash DL (2010) Plane-Strain propagation of a fluid-driven crack in a permeable rock with fracture toughness. J Eng Mech 136(9):1152–1166

    Article  Google Scholar 

  18. Peirce A, Detournay E (2008) An implicit level set method for modeling hydraulically driven fractures. Comput Methods Appl Mech Eng 197:2858–2885

    Article  Google Scholar 

  19. Garagash DL, Dctournay E, Adachi JI (2011) Multiscale tip asymptotics in hydraulic fracture with Leak-off. J Fluid Mech 669:260–297

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support provided by State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Song, L., Liu, C., Huang, Z. (2019). Sensitivity Analysis of Near-Wellbore Fracture Curving in Horizontal Well. In: Qu, Z., Lin, J. (eds) Proceedings of the International Field Exploration and Development Conference 2017. Springer Series in Geomechanics and Geoengineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7560-5_163

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7560-5_163

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7559-9

  • Online ISBN: 978-981-10-7560-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics