Skip to main content

The Interactomics of the RNA-Induced Silencing Complex

  • Chapter
  • First Online:
Current trends in Bioinformatics: An Insight
  • 1357 Accesses

Abstract

The posttranscriptional gene silencing mechanism initially mistaken as co-suppression but later identified as RNA interference mediated and regulated by small interfering RNAs (siRNAs), and microRNAs (miRNAs) has gradually emerged as a landmark discovery of the last decade. siRNA-based therapeutics is currently being investigated as an emerging opportunity for healthcare. The lack of structural data of the RNA-induced silencing complex and its key players has hindered the progress of utilization of this unique mechanism in the betterment of humanity. Crystallographic information regarding the Argonaute (Ago)-DNA-RNA complexes have helped in understanding the chemistry of the complex, but other valuable structural details still remain elusive. It is an immediate requirement to understand the exact mechanisms of interactions that occur between the key players of the microprocessor complex or for that matter the holo-RISC. Unless these interaction maps are obtained, complete effective usage and manipulation of this natural phenomenon shall remain uphill tasks for researchers worldwide. To harness the complete potential of siRNAs as therapeutic agents, various chemical modifications need to be performed to prevent nuclease attack, immune activation, increase the specificity of the interaction, and improve pharmacodynamics of the interacting components. Computational molecular dynamics simulations provide a probabilistic alternative for studying such complex structures. Both flexible and rigid docking processes can be utilized to understand the specificities of interactions as both protein-protein and protein nucleic acid docking algorithms have been implemented in free and licensed softwares, complexes obtained from which can then be subjected to analyses using the various interaction mapping tools to formulate a classical map of the RNAi interactome. In this chapter we attempt to elucidate the interactions of the key members of the holo-RISC complex using molecular docking and simulation. Specific interacting residues having the potential to serve as interacting hotspots were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarzguioui M et al (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das AK et al (2011) Secondary structural analysis of MicroRNA and their precursors in plants. Int J Agric Sci 3(1):62–64

    Article  CAS  Google Scholar 

  • Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001a) RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbashir SM et al (2001b) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM et al (2001c) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20(23):6877–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  Google Scholar 

  • Ganguli S, Datta A (2014) In silico mutagenesis reveals specific binding residues that regulate KSRP – microRNA precursor interactions in human. Ann Res Rev Biol 4(1):143–153

    Article  Google Scholar 

  • Ganguli S, De M, Datta A (2011) Analyses of argonaute– microRNA interactions in Zea mays. Int J Comput Biol 2(1):32–34

    CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species ofsmall antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  PubMed  Google Scholar 

  • Liu Q et al (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925

    Article  PubMed  Google Scholar 

  • Ma JB et al (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434(7033):666–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MA, Scott M (2010) Hammond emerging paradigms of regulated microRNA processing. Genes Dev 24:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez J et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  • Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  Google Scholar 

  • Okamura K et al (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orban TI, Izaurralde E (2005) Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    Article  CAS  PubMed  Google Scholar 

  • Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23:4727–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434:663–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrish S et al (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell 6:1077–1087

    Article  CAS  Google Scholar 

  • Pham JW et al (2004) A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117:83–94

    Article  CAS  PubMed  Google Scholar 

  • Rand TA et al (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101:14385–14389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz DS et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  Google Scholar 

  • Song JJ et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Tomari Y et al (2004a) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116:831–841

    Article  CAS  PubMed  Google Scholar 

  • Tomari Y et al (2004b) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Tuschl T et al (1999) Targeted mRNA degradation by doublestranded RNA in vitro. Genes Dev 13:3191–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamore PD et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, A., Ganguli, S. (2018). The Interactomics of the RNA-Induced Silencing Complex. In: Wadhwa, G., Shanmughavel, P., Singh, A., Bellare, J. (eds) Current trends in Bioinformatics: An Insight. Springer, Singapore. https://doi.org/10.1007/978-981-10-7483-7_11

Download citation

Publish with us

Policies and ethics