Skip to main content

Towards Combined Deterministic and Statistical Approaches to Modeling Dispersed Multiphase Flows

  • Chapter
  • First Online:
Droplets and Sprays

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The goal of modeling dispersed multiphase flows is to predict spatial distributions of the volume fraction, velocities and other properties of interest of the dispersed and continuous phases in geometries of practical interest. In this chapter we summarize key advances that have enabled progress towards this goal by starting with the development of interphase momentum transfer models for flow past single particles with a view to extending them to multiparticle systems. Particle-resolved direct numerical simulation of microscale (particle scale) phenomena has emerged as a powerful tool to propose statistical models for mesoscale and macroscale simulations of dispersed multiphase flow. Key advances in modeling of interphase momentum as well as particle and fluid velocity fluctuations are briefly reviewed. Building on this foundation we examine deterministic models for multiparticle effects that are based on the generalized Faxén theorem which provides a rigorous theoretical foundation for their development. In particular, the recently proposed pairwise interaction extended point-particle (PIEP) model is presented as a means of systematically including fluid-mediated particle-particle interactions in a deterministic framework. The performance of the PIEP model is assessed in different validation tests. Although the deterministic modeling approach provides physical insight and mechanistic interpretation of model terms, its limitation is it does not fully account for all the fluctuations that occur at the microscale. Therefore it is important to complement the deterministic model with a stochastic component to properly account for the statistical variability that is naturally present in all dispersed multiphase flows. We review key advances in statistical modeling of dispersed multiphase flows in terms of both the two-fluid theory as well as the Euler-Lagrange approach, with an emphasis on the latter, where we consider both Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) descriptions of the carrier phase. Finally, we propose a new paradigm for modeling dispersed multiphase flows that effectively combines the best elements of the deterministic and statistical modeling approaches as the most promising direction for development of predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Eulerian-Eulerian approach where the dispersed phase is also represented by Eulerian fields of volume fraction and mean velocity is not relevant to the deterministic modeling approach which is discussed in this work.

  2. 2.

    The terms ‘drift’ and ‘diffusion’ are used in the sense of stochastic differential equation theory.

  3. 3.

    The subscript f stands for the gas phase or fluid phase, and the subscript d stands for the dispersed phase.

References

  • Akiki G, Jackson TL, Balachandar S (2017) Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J Fluid Mech 813:882–928

    Article  MathSciNet  Google Scholar 

  • Almeida T, Jaberi F (2008) Large-eddy simulation of a dispersed particle-laden turbulent round jet. Int J Heat Mass Transfer 51(3–4):683–695

    Article  MATH  Google Scholar 

  • Amsden AA, O’Rourke PJ, Butler TD (1989) KIVA–II: a computer program for chemically reactive flows with sprays. Technical Report LA–11560–MS, Los Alamos National Laboratory

    Google Scholar 

  • Annamalai S, Balachandar S (2017) Faxén form of time-domain force on a sphere in unsteady spatially varying viscous compressible flows, 816:381–411l

    Google Scholar 

  • Apte SV, Mahesh K, Gorokhovski M, Moin P (2009) Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation. Proc Combust Inst 32(2):2257–2266

    Google Scholar 

  • Apte SV, Mahesh K, Moin P, Oefelein JC (2003) Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Int J Multiphase Flow 29(8):1311–1331

    Article  MATH  Google Scholar 

  • Bagchi P, Balachandar S (2003) Effect of turbulence on the drag and lift of a particle. Phys Fluids 15(11):3496

    Article  MATH  Google Scholar 

  • Bagchi P, Balachandar S (2004) Response of the wake of an isolated particle to an isotropic turbulent flow. J Fluid Mech 518:95–123

    Article  MATH  Google Scholar 

  • Balachandar S (2009) A scaling analysis for point-particle approaches to turbulent multiphase flows. Int J Multiphase Flow, 35(9)

    Google Scholar 

  • Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Ann Rev Fluid Mech 42:111–133

    Google Scholar 

  • Basset A (1888) A Treatise on hydrodynamics. Deighton, Bell and Company, London

    MATH  Google Scholar 

  • Beetstra R, van der Hoef MA, Kuipers JAM (2007) Drag force of intermediate Reynolds number flows past mono- and bidisperse arrays of spheres. AIChE J 53:489–501

    Article  Google Scholar 

  • Boivin M, Simonin O, Squires KD (1998) Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J Fluid Mech 375:235–263

    Article  MATH  Google Scholar 

  • Boussinesq J (1885) Sur la r esistance quoppose un liquide ind efini au repos au mouvement vari e dune sph‘ere solide. CR Acad Sci Paris 100:935–937

    Google Scholar 

  • Brown DJ, Hutchinson P (1979) The Interaction of solid or liquid particles and turbulent fluid flow fields—a numerical simulation. J Fluids Eng Trans ASME, 101:265–269

    Google Scholar 

  • Brucato A, Grisafi F, Montante G (1998) Particle drag coefficients in turbulent fluids. Chem Eng Sci 53:3295

    Article  Google Scholar 

  • Burton TM, Eaton JK (2005) Fully resolved simulations of particle-turbulence interaction. J Fluid Mech 545:67–111

    Article  MATH  Google Scholar 

  • Capecelatro J, Desjardins O (2013) An Euler-Lagrange strategy for simulating particle-laden flows. J Comput Phys 238:1–31

    Google Scholar 

  • Carrara MD, Desjardin PE (2006) A filtered mass density function approach for modeling separated two-phase flows for LES I: mathematical formulation. Int J Multiphase Flow 32(3):365–384

    Google Scholar 

  • Chiu HH, Su SP (1997) Theory of droplets (II): states, structures, and laws of interacting droplets. Atom Sprays 7(1):1–32

    Article  Google Scholar 

  • Clamen A, Gauvin WH (1969) Effect of turbulence on the drag coefficients of spheres in a supercritical flow regime. AIChE J 15:184

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles. In: Drops and particles. Academic Press

    Google Scholar 

  • Crowe CT, Sommerfeld M, Tsuji Y (1999) Multiphase flows with droplets and particles. CRC Press, Boca Raton, FL

    Google Scholar 

  • Deen NG, Kriebitzsch SHL, van der Hoef MA, Kuipers JAM (2012) Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chem Eng Sci 81:329–344

    Google Scholar 

  • Dreeben TD, Pope SB (1998) Probability density function Monte Carlo simulation of near-wall turbulent flows. J Fluid Mech 357:141–166

    Google Scholar 

  • Dwyer HA, Dandy DS (1990) Some influences of particle shape on drag and heat transfer. Phys Fluids A, 2(12):2110–2118

    Google Scholar 

  • Dwyer HA (1989) Calculations of droplet dynamics in high temperature environments. Progress Energy Combust Sci 15:131–158

    Article  Google Scholar 

  • Elghobashi SE, Truesdell GC (1992) Direct simulation of particle dispersion in a decaying isotropic turbulence. J Fluid Mech 242:655–700

    Article  Google Scholar 

  • Elghobashi SE, Truesdell GC (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys Fluids A 5:1790–1801

    Article  MATH  Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–60

    Article  Google Scholar 

  • Esmaeeli A, Tryggvason G (1998) Direct numerical simulation of bubbly flows. Part 1. Low Reynolds number arrays. J Fluid Mech 377:313–345

    Article  MATH  Google Scholar 

  • Faxén H (1923) Die Bewegung einer starren Kugel lngs der Achse eines mit zher Flssigkeit gefllten Rohres

    Google Scholar 

  • Fortes AF, Joseph DD, Lundgren TS (1987) Nonlinear mechanics of fluidization of beds of spherical particles. J Fluid Mech 177

    Google Scholar 

  • Gardiner CW (1985) Handbook of stochastic methods, 2nd edn. Springer, Berlin

    Google Scholar 

  • Garg R, Narayanan C, Lakehal D, Subramaniam S (2007) Accurate numerical estimation of interphase momentum transfer in lagrangian-eulerian simulations of dispersed two-phase flows. Int J Multiphase Flow 33(12):1337–1364

    Article  Google Scholar 

  • Garg R, Narayanan C, Lakehal D, Subramaniam S (2009) A numerically convergent Lagrangian-Eulerian simulation method for dispersed two-phase flows. Int J Multiphase Flow 35(4):376–388

    Article  Google Scholar 

  • Garg R, Tenneti S, Mohd-Yusof J, Subramaniam S (2011) Direct numerical simulation of gas-solids flow based on the immersed boundary method. In: Pannala S, Syamlal M, O’Brien TJ (eds) Computational gas-solids flows and reacting systems: theory, methods and practice, pp 245–276. IGI Global

    Google Scholar 

  • Garzo V, Tenneti S, Subramaniam S, Hrenya CM (2012) Enskog kinetic theory for monodisperse gas-solid flows. J Fluid Mech 712:129–168

    Article  MathSciNet  MATH  Google Scholar 

  • Gatignol R (1983) The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J Mech Theor Appl 1:143–160

    MATH  Google Scholar 

  • Glowinski R, Pan T, Hesla T, Joseph D, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169:363–426

    Article  MathSciNet  MATH  Google Scholar 

  • Gosman AD, Ioannides E (1983) Aspects of computer simulation of liquid fueled combustors. J Engine Res 6(7):482–490

    Google Scholar 

  • Goswami PS, Kumaran V (2010) Particle dynamics in a turbulent particle-gas suspension at high Stokes number. Part 2. The fluctuating-force model. J Fluid Mech 646:91–125

    Article  MATH  Google Scholar 

  • Haworth DC, Pope SB (1986) A generalized Langevin model for turbulent flows. Phys Fluids 29:387–405

    Article  MathSciNet  MATH  Google Scholar 

  • Helenbrook BT, Edwards CF (2002) Quasi-steady deformation and drag of uncontaminated liquid drops. Int J Multiphase Flow 28(10):1631–1657

    Article  MATH  Google Scholar 

  • Herrmann M (2008) A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J Comput Phys 227(4):2674–2706

    Article  MathSciNet  MATH  Google Scholar 

  • Herron IH, Davis SH, Bretherton FP (1975) On the sedimentation of a sphere in a centrifuge. J Fluid Mech 68:209–234

    Article  MATH  Google Scholar 

  • Hill RJ, Koch DL, Ladd AJC (2001a) Moderate-Reynolds-number flows in ordered and random arrays of spheres. J Fluid Mech 448:243–278

    Google Scholar 

  • Hill RJ, Koch DL, Ladd AJC (2001b) The first effects of fluid inertia on flows in ordered and random arrays of spheres. J Fluid Mech 448:213–241

    Google Scholar 

  • Horwitz JAK, Mani A (2016) Accurate calculation of stokes drag for pointparticle tracking in two-way coupled flows. J Comput Phys 318:85–109

    Article  MathSciNet  MATH  Google Scholar 

  • Kim I, Elghobashi S, Sirignano WA (1998) On the equation for spherical-particle motion: effect of reynolds and acceleration numbers. J Fluid Mech 367:221–253

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden P, Platen E (1992) Numerical solution of stochastic differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Kriebitzsch SHL, van der Hoef MA, Kuipers JAM (2013) Fully resolved simulation of a gas-fluidized bed: a critical test of DEM models. Chem Eng Sci 91:1–4

    Article  Google Scholar 

  • Ling Y, Parmar M, Balachandar S (2013) A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Int J Multiphase Flow 57:102–114

    Article  Google Scholar 

  • Ling Y, Balachandar S, Parmar M (2016) Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. Phys Fluids, 28(3)

    Google Scholar 

  • Lovalenti PM, Brady JF (1993a) The force on a sphere in a uniform flow with small-amplitude oscillations at finite Reynolds-number. J Fluid Mech 256:607–614

    Article  MathSciNet  MATH  Google Scholar 

  • Lovalenti PM, Brady JF (1993b) The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds-number. J Fluid Mech 256:561–605

    Article  MathSciNet  MATH  Google Scholar 

  • Markus U (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476

    Google Scholar 

  • Markutsya S, Subramaniam S, Dennis Vigil R, Fox RO (2008) On Brownian dynamics simulation of nanoparticle aggregation. Ind Eng Chem Res 47(10):3338–3345

    Google Scholar 

  • Mashayek F (1998) Direct numerical simulations of evaporating droplet dispersion in forced low Mach number turbulence. Int J Heat Mass Transfer 41(17):2601–2617

    Article  MATH  Google Scholar 

  • Mashayek F, Jaberi FA (1999) Particle dispersion in forced isotropic low-Mach-number turbulence. Int J Heat Mass Transfer 42(15):2823–2836

    Article  MATH  Google Scholar 

  • Mashayek F, Taulbee DB (2002) Turbulent gas-solid flows, part I: direct numerical simulations and Reynolds stress closures. Numer Heat Transfer Part B Fund 41(1):1–29

    Article  Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  MATH  Google Scholar 

  • Mehrabadi M, Murphy E, Subramaniam S (2016) Development of a gassolid drag law for clustered particles using particle-resolved direct numerical simulation. Chem Eng Sci 152:199–212

    Google Scholar 

  • Mehrabadi M, Tenneti S, Garg R, Subramaniam S (2015) Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: fixed particle assemblies and freely evolving suspensions. J Fluid Mech 770:210–246

    Google Scholar 

  • Mei R, Adrian RJ (1992) Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag and finite Reynolds number. J Fluid Mech 237:323–441

    Article  MATH  Google Scholar 

  • Merle A, Legendre D, Magnaudet J (2005) Forces on a high-Reynolds-number spherical bubble in a turbulent flow. J Fluid Mech 532:53–62

    Article  MATH  Google Scholar 

  • Mikhael G, Marcus H (2008) Modeling primary atomization. Annu Rev Fluid Mech 40(1):343–366

    Google Scholar 

  • Miller RS, Bellan J (1999) Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet laden stream. J Fluid Mech 384:293–338

    Article  MATH  Google Scholar 

  • Okong’o NA, Bellan J (2000) A priori subgrid analysis of temporal mixing layers with evaporating droplets. Phys Fluids 12(6):1573–1591

    Google Scholar 

  • Okong’o NA, Bellan J (2004) Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1. Direct numerical simulation, formulation and a priori analysis. J Fluid Mech 499:1–47

    Google Scholar 

  • Ormancey A, Martinon J (1984) Prediction of particle dispersion in turbulent flows. PhysicoChem Hydrodyn 3/4(5):229–244

    Google Scholar 

  • O’Rourke PJ (1989) Statistical properties and numerical implementation of a model for droplet dispersion in a turbulent gas. J Comput Phys 83(2):345–360

    Article  MATH  Google Scholar 

  • Oseen CW (1927) Hydrodynamik. Akademische Verlagsgesellschaft, Leipzig

    MATH  Google Scholar 

  • Pai MG, Subramaniam S (2012) Two-way coupled stochastic model for dispersion of inertial particles in turbulence. J Fluid Mech 700:29–62

    Google Scholar 

  • Pai MG, Subramaniam S (2006) Modeling interphase turbulent kinetic energy transfer in Lagrangian-Eulerian spray computations. Atom Sprays 16(7):807–826

    Article  Google Scholar 

  • Pai MG, Subramaniam S (2007) Modeling droplet dispersion and interphase turbulent kinetic energy transfer using a new dual-timescale Langevin model. Int J Multiphase Flow 33(3):252–281

    Article  Google Scholar 

  • Pai MG, Subramaniam S (2009) A comprehensive probability density function formalism for multiphase flows. J Fluid Mech 628:181–228

    Article  MathSciNet  MATH  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Port Chester, NY

    Book  MATH  Google Scholar 

  • Quan S, Schmidt D (2007) A moving mesh interface tracking method for 3D incompressible two-phase flows. J Comput Phys 221(2):761–780

    Article  MathSciNet  MATH  Google Scholar 

  • Quan S, Schmidt DP, Hua J, Lou J (2009) A numerical study of the relaxation and breakup of an elongated drop in a viscous liquid. J Fluid Mech 640:235

    Google Scholar 

  • Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447–459

    Article  MathSciNet  MATH  Google Scholar 

  • Saffman PGT (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  • Sarkar S, van der Hoef MA, Kuipers JAM (2009) Fluid-particle interaction from lattice Boltzmann simulations for flow through polydisperse random arrays of spheres. Chem Eng Sci 64(11):2683–2691

    Article  Google Scholar 

  • Schiller L, Naumann AZ (1933) A drag coefficient correlation. Z Ver Deutsch Ing, 318–320

    Google Scholar 

  • Schmidt DP, Rutland CJ (2000) A new droplet collision algorithm. J Comput Phys 164(1):62–80

    Article  MATH  Google Scholar 

  • Squires KD, Eaton JK (1990) Particle response and turbulence modification in isotropic turbulence. Phys Fluids A 2:1191–1203

    Google Scholar 

  • Squires KD, Eaton JK (1991a) Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence. Phys Fluids 3(1):130–143

    Google Scholar 

  • Squires KD, Eaton JK (1991b) Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J Fluid Mech 226:1–35

    Google Scholar 

  • Subramaniam S (2013) Lagrangian-Eulerian methods for multiphase flows. Progress Energy Combust Sci 39:215–245

    Google Scholar 

  • Sundaram S, Collins LR (1997) Collision statistics in an isotropic particle-laden turbulent suspension. Part I. Direct numerical simulations. J Fluid Mech 379:75–109

    Article  MATH  Google Scholar 

  • Sundaram S, Collins LR (1999) A numerical study of the modulation of isotropic turbulence by suspended particles. J Fluid Mech 379:105–143

    Article  MATH  Google Scholar 

  • Tenneti S, Garg R, Hrenya CM, Fox RO, Subramaniam S (2010) Direct numerical simulation of gas-solid suspensions at moderate Reynolds number: Quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technol 203(1):57–69

    Article  Google Scholar 

  • Tenneti S, Garg R, Subramaniam S (2011) Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J Multiphase Flow 37(9):1072–1092

    Article  Google Scholar 

  • Tenneti S, Mehrabadi M, Subramaniam S (2016) Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas-solid suspensions. J Fluid Mech 788:695–729

    Google Scholar 

  • Tenneti S, Subramaniam S (2014) Particle-resolved direct numerical simulation for gas-solid flow model development. Ann Rev Fluid Mech 46:199–230

    Google Scholar 

  • Uhlherr PHT, Sinclair CG (1970) The effect of freestream turbulence on the drag coefficients of spheres. Proc CHEMECA 1:1

    Google Scholar 

  • van der Hoef MA, Beetstra R, Kuipers JAM (2005) Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of sphere: results for the permeability and drag force. J Fluid Mech 528:233–254

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L-P, Rosa B, Gao H, He G, Jin G (2009) Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Int J Multiphase Flow 35(9):854–867

    Google Scholar 

  • Warnica WD, Renksizbulut M, Strong AB (1995) Drag coefficients of spherical liquid droplets part 2: turbulent gaseous fields. Exp Fluids 18:265–276

    Article  Google Scholar 

  • Warnica WD, Renksizbulut M, Strong AB (1995) Drag coefficients of spherical liquid droplets part 1: quiescent gaseous fields. Exp Fluids 18:258–264

    Article  Google Scholar 

  • Wu J-S, Faeth GM (1994) Effect of ambient turbulence intensity on sphere wakes at intermediate reynolds numbers. AIAA J 33:171–173

    Article  Google Scholar 

  • Wylie JJ, Koch DL, Ladd AJC (2003) Rheology of suspensions with high particle inertia and moderate fluid inertia. J Fluid Mech 480:95–118

    Google Scholar 

  • Xu Y, Subramaniam S (2006) A multiscale model for dilute turbulent gas-particle flows based on the equilibration of energy concept. Phys Fluids 18:033301(1–17)

    Google Scholar 

  • Yin X, Sundaresan S (2009a) Fluid-particle drag in low-Reynolds-number polydisperse gas-solid suspensions. AIChE J 55(6):1352–1368

    Google Scholar 

  • Yin X, Sundaresan S (2009b) Drag law for bidisperse gas-solid suspensions containing equally sized spheres. Ind Eng Chem Res 48(1):227–241

    Google Scholar 

  • Ying Xu, Subramaniam S (2010) effect of particle clusters on carrier flow turbulence: a direct numerical simulation study. Flow Turbul Combust 85(3–4):735–761

    Google Scholar 

  • Zarin NA, Nicholls JA (1971) Sphere drag in solid rocketsnoncontinuum and turbulence effects. Combust Sci Technol 3:273

    Article  Google Scholar 

  • Zhang Z, Prosperetti A (2005) A second-order method for three-dimensional particle simulation. J Comput Phys 210(1):292–324

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Subramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramaniam, S., Balachandar, S. (2018). Towards Combined Deterministic and Statistical Approaches to Modeling Dispersed Multiphase Flows. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplets and Sprays . Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7449-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7449-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7448-6

  • Online ISBN: 978-981-10-7449-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics