Skip to main content

Pathogen-Associated Molecular Patterns and Their Perception in Plants

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

In plants, innate immunity, the first line of microbial recognition leading to active defense responses, relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Pattern recognition receptors (PRRs) enable plants to sense non-self molecules exhibited by microbes and raise proper defense responses or establish symbiosis. This recognition leads to PAMP-triggered immunity (PTI). Despite the numerous PAMPs recognized by plants, only a handful of PRRs are characterized. Most of them correspond to the transmembrane proteins with a ligand-binding ectodomain. PRRs interact with additional transmembrane proteins that act as signaling adapters or amplifiers to achieve full functionality. The crucial role of PRRs in antimicrobial immunity is demonstrated by the direct targeting of PRRs and their associated proteins by pathogenic virulence effectors. In recent years the importance of PRR subcellular trafficking to plant immunity has become apparent. PRRs traffic through the endoplasmic reticulum (ER) and the Golgi apparatus to the plasma membrane, where they recognize their cognate ligands. At the plasma membrane, PRRs can be recycled or internalized via endocytic pathways. By using genetic and biochemical tools in combination with bio-imaging, the trafficking pathways and their role in PRR perception of microbial molecules are now being revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akamatsu A et al (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13(4):465–476

    Article  CAS  PubMed  Google Scholar 

  • Albrecht C et al (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109(1):303–308

    Article  CAS  PubMed  Google Scholar 

  • Bahar O et al (2014) The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. Peer J 2:e242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey BA, Dean JF, Anderson JD (1990) An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol 94(4):1849–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar M et al (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J Cell Mol Biol 63(5):791–800

    Article  CAS  Google Scholar 

  • Bauer Z et al (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276(49):45669–45676

    Article  CAS  PubMed  Google Scholar 

  • Bedini E, Parrilli M, Unverzagt C (2002) Oligomerization of a rhamnanic trisaccharide repeating unit of O-chain polysaccharides from phytopathogenic bacteria

    Google Scholar 

  • Bedini E et al (2005) Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides. J Am Chem Soc 127(8):2414–2416

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y et al (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci U S A 109(1):297–302

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ et al (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193(19):5450–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Borner GHH et al (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132(2):568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60(15):4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Braun SG et al (2005) Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Mol Plant-Microbe Interact MPMI 18(7):674–681

    Article  CAS  PubMed  Google Scholar 

  • Brutus A et al (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107(20):9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7(4):481–488

    Article  CAS  PubMed  Google Scholar 

  • Cao Y et al (2013) Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated Arabidopsis immunity. PLoS Pathog 9(4):e1003313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Stennis M, Low PS (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272(45):28274–28280

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2010) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci U S A 107(17):8029–8034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2014) An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant 7(5):874–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla D et al (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18(2):465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla D et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448(7152):497–500

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D et al (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14(10):535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16(1):232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi J et al (2014) Identification of a plant receptor for extracellular ATP. Science (New York, NY) 343(6168):290–294

    Article  CAS  Google Scholar 

  • Choi HW et al (2016) Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLoS Pathog 12(3):e1005518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrath U et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact MPMI 19(10):1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71

    Article  CAS  PubMed  Google Scholar 

  • Dardick C, Schwessinger B, Ronald P (2012) Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 15(4):358–366

    Article  CAS  PubMed  Google Scholar 

  • de Jonge R et al (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 109(13):5110–5115

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempsey DA et al (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Denoux C et al (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1(3):423–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desaki Y et al (2006) Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol 47(11):1530–1540

    Article  CAS  PubMed  Google Scholar 

  • Desaki Y et al (2012) Positive crosstalk of MAMP signaling pathways in rice cells. PLoS One 7(12):e51953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548

    Article  CAS  PubMed  Google Scholar 

  • Dou D, Zhou J-M (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12(4):484–495

    Article  CAS  PubMed  Google Scholar 

  • Dow M, Newman M-A, von Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261

    Article  CAS  PubMed  Google Scholar 

  • Dunning FM et al (2007) Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 19(10):3297–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziarski R, Gupta D (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biol 7(8):232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erbs G, Newman M-A (2012) The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol Plant Pathol 13(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Erbs G et al (2008) Peptidoglycan and muropeptides from pathogens agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 15(5):438–448

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C et al (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110(22):9166–9170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278(8):6201–6208

    Article  CAS  PubMed  Google Scholar 

  • Felix G et al (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J Cell Mol Biol 18(3):265–276

    Article  CAS  Google Scholar 

  • Feng F et al (2012) A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485(7396):114–118

    Article  CAS  PubMed  Google Scholar 

  • Fradin EF et al (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150(1):320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaulin E et al (2006) Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18(7):1766–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherbi H et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 105(12):4928–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez-Ibanez S et al (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol CB 19(5):423–429

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Gómez-gómez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in arabidopsis. Plant Cell 13:1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gou X et al (2012) Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet 8(1):e1002452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross A et al (2005) Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165(1):215–226

    Article  CAS  PubMed  Google Scholar 

  • Gust AA et al (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282(44):32338–32348

    Article  CAS  PubMed  Google Scholar 

  • Gutsmann T, Schromm AB, Brandenburg K (2007) The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol IJMM 297(5):341–352

    Article  CAS  PubMed  Google Scholar 

  • Halter T et al (2014) The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr Biol CB 24(2):134–143

    Article  CAS  PubMed  Google Scholar 

  • Hayafune M et al (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci U S A 111(3):E404–E413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heese A et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104(29):12217–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiling S et al (2010) Jasmonate and ppHsystemin regulate key Malonylation steps in the biosynthesis of 17-Hydroxygeranyllinalool Diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22(1):273–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helft L et al (2011) LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PLoS One 6(7):e21614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci U S A 104(25):10732–10736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103(26):10098–10103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155(3):1325–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A et al (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 110(14):5707–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ialenti A et al (2006) A novel lipid A from Halomonas magadiensis inhibits enteric LPS-induced human monocyte activation. Eur J Immunol 36(2):354–360

    Article  CAS  PubMed  Google Scholar 

  • Jehle AK et al (2013) Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor kinase SOBIR. Plant Signal Behav 8(12):e27408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeppesen MG et al (2005) Crystal structure of the bovine mitochondrial elongation factor Tu.Ts complex. J Biol Chem 280(6):5071–5081

    Article  CAS  PubMed  Google Scholar 

  • Jeter CR et al (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16(10):2652–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y et al (2013) The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J Cell Mol Biol 73(5):814–823

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y et al (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Kaku H et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29):11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannenberg EL, Carlson RW (2001) Lipid A and O-chain modifications cause rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39(2):379–391

    Article  CAS  PubMed  Google Scholar 

  • Kauss et al (1999) Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive H(2)O(2)-generating system. Plant Physiol 120(4):1175–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawchuk LM et al (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98(11):6511–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korasick DA et al (2010) Novel functions of stomatal cytokinesis-defective 1 (SCD1) in innate immune responses against bacteria. J Biol Chem 285(30):23342–23350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korner CJ et al (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant-Microbe Interact MPMI 26(11):1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Kouzai Y et al (2014) CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol 84(4–5):519–528

    Article  CAS  PubMed  Google Scholar 

  • Krol E et al (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285(18):13471–13479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze G et al (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16(12):3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyndt T et al (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196(3):887–900

    Article  CAS  PubMed  Google Scholar 

  • Laluk K et al (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23(8):2831–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert KN, Allen KD, Sussex IM (1999) Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica. Mol Plant-Microbe Interact MPMI 12(4):328–336

    Article  CAS  PubMed  Google Scholar 

  • Launholt D et al (2006) Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell 18(11):2904–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110(2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Li C et al (2011) Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proc Natl Acad Sci U S A 108(28):11387–11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebrand TWH et al (2013) Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci U S A 110(24):10010–10015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limpens E et al (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science (New York, NY) 302(5645):630–633

    Article  CAS  Google Scholar 

  • Lin W et al (2013) Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proc Natl Acad Sci U S A 110(29):12114–12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z-JD et al (2015) PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses. Plant Physiol 169(4):2950–2962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T et al (2012) Chitin-induced dimerization activates a plant immune receptor. Science (New York, NY) 336(6085):1160–1164

    Article  CAS  Google Scholar 

  • Liu Z et al (2013) BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc Natl Acad Sci U S A 110(15):6205–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livaja M et al (2008) Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 213(3–4):161–171

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Duran R et al (2013) The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2:e00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu D et al (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107(1):496–501

    Article  CAS  PubMed  Google Scholar 

  • Lu D et al (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science (New York, NY) 332(6036):1439–1442

    Article  CAS  Google Scholar 

  • Madsen EB et al (2011) Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J Cell Mol Biol 65(3):404–417

    Article  CAS  Google Scholar 

  • Malinovsky FG et al (2014) Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1. Plant Physiol 164(3):1443–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manosalva P et al (2015) Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 6:7795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos FV, Rickauer M, Esquerre-Tugaye MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant-Microbe Interact MPMI 10(9):1045–1053

    Article  CAS  PubMed  Google Scholar 

  • McDonald C, Inohara N, Nunez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280(21):20177–20180

    Article  CAS  PubMed  Google Scholar 

  • McGurl B et al (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science (New York, NY) 255(5051):1570–1573

    Article  CAS  Google Scholar 

  • McMichael CM et al (2013) Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. Plant Cell 25(10):3910–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meindl T, Boller T, Felix G (2000) The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12(9):1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle T, Grasser KD (2011) Unexpected mobility of plant chromatin-associated HMGB proteins. Plant Signal Behav 6(6):878–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141(4):1666–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J Cell Mol Biol 50(3):500–513

    Article  CAS  Google Scholar 

  • Mithoe SC et al (2016) Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep 17(3):441–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya A et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49):19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Mueller K et al (2012) Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24(5):2213–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munford RS, Varley AW (2006) Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog 2(6):e67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y et al (2013) Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal Behav 8(9)

    Google Scholar 

  • Narvaez-Vasquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218(3):360–369

    Article  CAS  PubMed  Google Scholar 

  • Newman MA, Daniels MJ, Dow JM (1995) Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol Plant-Microbe Interact MPMI 8(5):778–780

    Article  CAS  PubMed  Google Scholar 

  • Newman M-A et al (2002) Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J Cell Mol Biol 29(4):487–495

    Article  CAS  Google Scholar 

  • Newman M-A et al (2007) Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13(2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Newman M-A et al (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Nothnagel EA et al (1983) Host-pathogen interactions: XXII. A Galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71(4):916–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuhse TS et al (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J Cell Mol Biol 51(5):931–940

    Article  CAS  Google Scholar 

  • Nurnberger T et al (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78(3):449–460

    Article  CAS  PubMed  Google Scholar 

  • Ono E et al (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 98(2):759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278(32):30044–30050

    Article  CAS  PubMed  Google Scholar 

  • Pearce G et al (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science (New York, NY) 253(5022):895–897

    Article  CAS  Google Scholar 

  • Pearce G et al (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411(6839):817–820

    Article  CAS  PubMed  Google Scholar 

  • Pedersen DS, Grasser KD (2010) The role of chromosomal HMGB proteins in plants. Biochim Biophys Acta 1799(1–2):171–174

    Article  CAS  PubMed  Google Scholar 

  • Petutschnig EK et al (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285(37):28902–28911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  Google Scholar 

  • Ramonell K et al (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol 138(2):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranf S et al (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J Cell Mol Biol 68(1):100–113

    Article  CAS  Google Scholar 

  • Ranf S et al (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16(4):426–433

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20(5):537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robatzek S et al (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64(5):539–547

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16(6):1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos HC, Rumbo M, Sirard J-C (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517

    Article  CAS  PubMed  Google Scholar 

  • Roux M et al (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23(6):2440–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Ryals JA et al (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago J, Henzler C, Hothorn M (2013) Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science (New York, NY) 341(6148):889–892

    Article  CAS  Google Scholar 

  • Scheer, Ryan (1999) A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell 11(8):1525–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer JM, Ryan CAJ (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci U S A 99(14):9585–9590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider M et al (1996) Systemic acquired resistance in plants. Int Rev Cytol 168:303–340

    Article  CAS  Google Scholar 

  • Schulze B et al (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285(13):9444–9451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer P et al (1996) Perception of free cutin monomers by plant cells. Plant J 10(2):331–341

    Article  CAS  Google Scholar 

  • Schwessinger B et al (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7(4):e1002046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segonzac C et al (2011) Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol 156(2):687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sejalon-Delmas N et al (1997) Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87(9):899–909

    Article  CAS  PubMed  Google Scholar 

  • Seong S-Y, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4(6):469–478

    Article  CAS  PubMed  Google Scholar 

  • Shi H et al (2013) BR-signaling kinase1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25(3):1143–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu T et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J Cell Mol Biol 64(2):204–214

    Article  CAS  Google Scholar 

  • Shinya T et al (2012) Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 53(10):1696–1706

    Article  CAS  PubMed  Google Scholar 

  • Silipo A et al (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280(39):33660–33668

    Article  CAS  PubMed  Google Scholar 

  • Silipo A et al (2008) The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chembiochem Eur J Chem Biol 9(6):896–904

    Article  CAS  Google Scholar 

  • Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Front Plant Sci 4:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JM et al (2014) Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. Plant Physiol 164(1):440–454

    Article  CAS  PubMed  Google Scholar 

  • Song WY et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (New York, NY) 270(5243):1804–1806

    Article  CAS  Google Scholar 

  • Song WY et al (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9(8):1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CJ et al (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140(4):1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892):959–962

    Article  CAS  PubMed  Google Scholar 

  • Suharsono U et al (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 99(20):13307–13312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W et al (2012) Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. Plant Cell 24(3):1096–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li L et al (2013a) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science (New York, NY) 342(6158):624–628

    Article  CAS  Google Scholar 

  • Sun Y, Han Z et al (2013b) Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res 23(11):1326–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K et al (2014) Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front Plant Sci 5:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang W et al (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science (New York, NY) 321(5888):557–560

    Article  CAS  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17(5):260–270

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Nurnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23(1):4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tintor N et al (2013) Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci U S A 110(15):6211–6216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traub S et al (2006) MDP and other muropeptides – direct and synergistic effects on the immune system. J Endotoxin Res 12(2):69–85

    CAS  PubMed  Google Scholar 

  • Trujillo M et al (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol CB 18(18):1396–1401

    Article  CAS  PubMed  Google Scholar 

  • Umemoto N et al (1997) The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc Natl Acad Sci U S A 94(3):1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80(4–5):365–388

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Macovei A, Tuteja N (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6(5):1405–1418

    Article  CAS  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vercauteren I et al (2001) Arabidopsis thaliana genes expressed in the early compatible interaction with root-knot nematodes. Mol Plant-Microbe Interact MPMI 14(3):288–299

    Article  CAS  PubMed  Google Scholar 

  • Veronese P et al (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18(1):257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Wan J et al (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20(2):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J et al (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol 160(1):396–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL et al (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant-Microbe Interact MPMI 9(9):850–855

    Article  CAS  PubMed  Google Scholar 

  • Wang GL et al (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10(5):765–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-S et al (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18(12):3635–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G et al (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147(2):503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52(5):837–850

    Article  CAS  PubMed  Google Scholar 

  • Watt SA et al (2006) Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of an oxidative burst reaction in tobacco cell suspension cultures. J Biotechnol 126(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Willmann R et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci U S A 108(49):19824–19829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W-H et al (2006) The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant J Cell Mol Biol 45(5):740–751

    Article  CAS  Google Scholar 

  • Xu J et al (2014) A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. Plant J Cell Mol Biol 77(2):222–234

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 103(26):10104–10109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y et al (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22(2):508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K et al (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1(3):175–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7(4):290–301

    Article  CAS  PubMed  Google Scholar 

  • Zhang W et al (2013) Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25(10):4227–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X et al (2016) Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ 39(6):1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2013) Combined roles of ethylene and endogenous peptides in regulating plant immunity and growth. Proc Natl Acad Sci U S A 110(15):5748–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitali Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathore, J.S., Ghosh, C. (2018). Pathogen-Associated Molecular Patterns and Their Perception in Plants. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_4

Download citation

Publish with us

Policies and ethics