Skip to main content

Quality Monitoring of Water Through Electromagnetic Sensor

  • Conference paper
  • First Online:
Microelectronics, Electromagnetics and Telecommunications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 471))

Abstract

The proposed sensor is designed on the principle of electromagnetic. The sensor structure is capable of generating electromagnetic field; this field is used for sensing contaminations in water. This electromagnetic sensor is a hexagonal-shaped coil surrounding the interdigital capacitor, implemented for monitoring the quality of water. The modelling and simulation results are experimentally tested. The experiments were performed to find out the behaviour characteristics of sensor and also to observe the response of sensor to materials involving air and distilled water. The sensor is capable of differentiating the presence of material. The sensor is tested for phosphate detection. The ammonium dihydrogen phosphate is added to distilled water so that solution of varying phosphate concentration is prepared. The sensor is immersed in the solution and its varying characteristics were obtained. The experimental results and future improvements that will be considered are also incorporated in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. M. Stanley, Fundamental of Environmental Chemistry, 3rd ed. Boca Raton: CRC Press, Taylor and Francis Group, 2009.

    Google Scholar 

  2. L. P. Donald and D. F. Charles, ”Water Quality for Livestock Drinking,” MU Extension Publication, University of Missouri-Columbia, vol. EQ 381, pp. 1–4, 2001.

    Google Scholar 

  3. N. F. Metcalf, W. K. Metcalf, and X. Wang, “The Differing Sensitivities of the Hemoglobin of Fetal and Adult Red-Cells to Oxidation by Nitrites in Man - the Role of Plasma,” Journal of Physiology-London, vol. 407, pp. P44–P44, Dec 1988.

    Google Scholar 

  4. M. A. Ferree and R. D. Shannon, “Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of waste water samples”, Water Research, vol. 35, pp. 327–332, 2001.

    Google Scholar 

  5. S.-J. Cho, S. Sasaki, K. Ikebukuro, and I. Karube, “A simple nitrate sensor system using titanium trichloride and an ammonium electrode, “Sensors and Actuators B: Chemical, vol. 85, pp. 120–125, 2002.

    Google Scholar 

  6. T. Kjær, L. Hauer Larsen, and N. P. Revsbech, “Sensitivity control of ion-selective biosensors by electrophoretically mediated analyte transport,” Analytica Chimica Acta, vol. 391, pp. 57–63, 1999.

    Google Scholar 

  7. N. J. Goldfine and D. Clark, ”Near-surface material property profiling for determination of SCC susceptibility,” in 4th EPRI Balance-of-Plant Heat Exchanger NDE Symp, 1996.

    Google Scholar 

  8. Y. Sheiretov, D. Grundy, V. Zilberstein, N. Goldfine, and S. Maley, “MWM-Array Sensors for In Situ Monitoring of High-Temperature Components in Power Plants,” IEEE Sensors Journal, vol. 9, pp. 1527–1536, Nov 2009.

    Google Scholar 

  9. K. Sundara-Rajan, L. Byrd, and A. V. Mamishev, “Moisture content estimation in paper pulp using fringing field impedance Spectroscopy,” IEEE Sensors Journal, vol. 4, pp. 378–383, Jun 2004.

    Google Scholar 

  10. S. M. Radke and E. C. Alocilja, ”Design and fabrication of a microimpedance biosensor for bacterial detection,” IEEE Sensors Journal, vol. 4, pp. 434–440, Aug 2004.

    Google Scholar 

  11. P. Furjes, A. Kovacs, C. Ducso, M. Adam,B. Muller, and U. Mescheder, “Poroussilicon-based humidity sensor with interdigital electrodes and internal heaters, “Sensors and Actuators B-Chemical, vol. 95, pp. 140–144, Oct 15 2003.

    Google Scholar 

  12. S. M. Radke and E. C. Alocilja, ”Amicrofabricated biosensor for detecting food borne bioterrorism agents,” IEEE Sensors Journal, vol. 5, pp. 744–750, 2005.

    Google Scholar 

  13. S. C. Mukhopadhyay, C. P. Gooneratne, S. Demidenko, and G. S. Gupta, “Low Cost Sensing System for Dairy Products Quality Monitoring, “Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 2005. IMTC 2005.vol. 1, pp. 244–249, May 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheetal Mapare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mapare, S., Sarate, G.G. (2018). Quality Monitoring of Water Through Electromagnetic Sensor. In: Anguera, J., Satapathy, S., Bhateja, V., Sunitha, K. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 471. Springer, Singapore. https://doi.org/10.1007/978-981-10-7329-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7329-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7328-1

  • Online ISBN: 978-981-10-7329-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics