Skip to main content

Environmental Sound Management of Asbestos-Containing Wastes Generated from Industries in India

  • Conference paper
  • First Online:
Waste Management and Resource Efficiency
  • 1663 Accesses

Abstract

“Asbestos” has been used since the historical period for the manufacture of around 3000 products; the reasons are attributed to its characteristic properties such as high tensile strength, lightweight, heat resistance capacity and most importantly its usability as an insulating material. But, due to its unambiguous links with diseases such as ‘Mesothelioma’ and ‘Lung-fibrosis’, many of the developed nations have already imposed a ban on its usage. However, it is still extensively used in other nations including India, China, Nepal, Pakistan, Iran, Malaysia, Philippines, Indonesia, Thailand, Burma and Vietnam. These countries persistently produce and consume asbestos and other associated asbestos-containing products. In a developing economy like India, the occupational exposure of asbestos is usually encountered during mining of asbestos, manufacturing asbestos-containing construction products, in asbestos processing industries as well as in asbestos-containing product (ACP) (insulation material) manufacturing industries. A major quantum of asbestos wastes (AW) is generated during refurbishment activities such as demotion of old buildings (corrugated cement sheets) and dismantling of end-of-life ships. There are a large number of asbestos products manufacturing and utilizing industries in India, both in large- and medium-scale sectors. But a huge significant amount of small-scale and unorganised sectors is located around the major rural and urban centres. This study articulates the current trend of production of asbestos and consumption in India as well as the generation of asbestos wastes (AW) and asbestos-containing wastes (ACW) in various industries in India. As asbestos is known for its resistance to fire and being lightweight, it has been widely used in chemical plant machinery, infrastructural framework of industrial plants and manufacture of fire and chemical-resistant protective clothing for chemical plant workers. Therefore, it is imperative to estimate various asbestos-containing materials (ACM) and generation of AW and ACW in industries for adopting the precautionary measures while handling such materials. To address the asbestos problem, effective government policies and regulations are imperatively associated with technical interventions. Self-regulation by the concerned industries, including the adoption of cleaner production and management strategies during planning, design and operations, will significantly help to ensure proper asbestos wastes management and minimization of exposure to the workforce. The strategies for preventive environmental management of AW and ACW have been discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foresti, E., Fornero, E., Lesci, I. G., Rinaudo, C., Zuccheri, T., & Roveri, N. (2009). Asbestos health hazard: A spectroscopic study of synthetic geoinspired Fe-doped chrysotile. Journal of Hazardous Materials, 167, 1070–1079.

    Article  CAS  Google Scholar 

  2. Ross, M., Langer, A. M., Nord, G. L., Nolan, R. P., Lee, R. J., Van Orden, D., et al. (2008). The mineral nature of asbestos. Regulatory Toxicology and Pharmacology, 52, S26–S30.

    Article  CAS  Google Scholar 

  3. Thompson, S. K., & Mason, E. (2002). Asbestos: Mineral and fibres. Chemical Health and Safety, 9, 21–23.

    Article  CAS  Google Scholar 

  4. Bernstein, D. M., & Hoskins, J. A. (2006). The health effects of chrysotile: Current perspective based upon recent data. Regulatory Toxicology and Pharmacology, 45(3), 252–264.

    Article  CAS  Google Scholar 

  5. Virta, R. L. (2002). Asbestos, U.S. geological survey minerals yearbook 2001 (Vol. 1, pp. 9.1–9.6).

    Google Scholar 

  6. Virta, R. L. (2002). Asbestos: Geology, mineralogy, mining, and uses. Open-File Report 02-149. US Department of the Interior. US Geological Survey. Available from: http://pubs.USGS.gov/of/2002/of02-149/index.html.

  7. Kanarek, M. S. (2011). Mesothelioma from chrysotile asbestos: Update. Annals of Epidemiology, 21(9), 688–697.

    Article  Google Scholar 

  8. World Health Organization. (2006). Elimination of asbestos-related diseases.

    Google Scholar 

  9. UCGS. (2006). Worldwide asbestos supply and consumption trends from 1900 through 2003. Reston, VA: US Geological Survey.

    Google Scholar 

  10. Gidarakos, E., Anastasiadou, K., Koumantakis, E., & Nikolaos, S. (2008). Investigative studies for the use of an inactive asbestos mine as a disposal site for asbestos wastes. Journal of Hazardous Materials, 153(3), 955–965.

    Article  CAS  Google Scholar 

  11. Paglietti, F., Malinconico, S., Della Staffa, B. C., Bellagamba, S., & De Simone, P. (2016). Classification and management of asbestos-containing waste: European legislation and the Italian experience. Waste Management, 50, 130–150.

    Article  Google Scholar 

  12. Ying, C., Maeda, M., Nishimura, Y., Kumagai-Takei, N., Hayashi, H., Matsuzaki, H., et al. (2015). Enhancement of regulatory T cell-like suppressive function in MT-2 by long-term and low-dose exposure to asbestos. Toxicology, 338, 86–94.

    Article  CAS  Google Scholar 

  13. Donaldson, K., Poland, C. A., Murphy, F. A., MacFarlane, M., Chernova, T., & Schinwald, A. (2013). Pulmonary toxicity of carbon nanotubes and asbestos—Similarities and differences. Advanced Drug Delivery Reviews, 65(15), 2078–2086.

    Article  CAS  Google Scholar 

  14. Ansari, F. A., Ahmad, I., Ashquin, M., Yunus, M., & Rahman, Q. (2007). Monitoring and identification of airborne asbestos in unorganized sectors, India. Chemosphere, 68, 716–723.

    Article  Google Scholar 

  15. Li, J., Dong, Q., Yu, K., & Liu, L. (2014). Asbestos and asbestos waste management in the Asian-pacific region: Trends, Challenges and Solutions. Journal of Cleaner Production, 81, 218–226.

    Article  Google Scholar 

  16. Ramanathan, A. L., & Subramanian, V. (2001). Present status of asbestos mining and related health problems in India—A Survey. Industrial Health, 39, 309–315.

    Article  CAS  Google Scholar 

  17. Dave, S., & Beckett, W. S. (2005). Occupational asbestos exposure and predictable asbestos-related diseases in India. American Journal of Industrial Medicine, 48, 137–143.

    Article  Google Scholar 

  18. Indian Bureau of Mines. (2015). Indian mineral year book-2014, asbestos (pp. 2–10).

    Google Scholar 

  19. USGS. (1995). Asbestos, U.S. geological survey minerals yearbook 1994 (Vol. 1, pp. 1-68.1-8.5).

    Google Scholar 

  20. USGS. (1996). Asbestos, U.S. geological survey minerals Yearbook 1995 (Vol. 1, pp. 1–7).

    Google Scholar 

  21. USGS. (1997). Asbestos, U.S. geological survey minerals yearbook 1996 (Vol. 1, pp. 1–5).

    Google Scholar 

  22. USGS. (1998). Asbestos, U.S. geological survey minerals yearbook 1997 (Vol. 1, pp. 8.1–8.5).

    Google Scholar 

  23. USGS. (1999). Asbestos, U.S. geological survey minerals yearbook 1998 (Vol. 1, pp. 8.1–8.5).

    Google Scholar 

  24. USGS. (2000). Asbestos, U.S. geological survey minerals yearbook 1999 (Vol. 1, pp. 8.1–8.6).

    Google Scholar 

  25. USGS. (2003a), Asbestos in metals and minerals: U.S. geological survey minerals yearbook 2001 (Vol. 1, pp. 8.1–8.7).

    Google Scholar 

  26. USGS. (2003). Asbestos, U.S. geological survey minerals yearbook 2002 (Vol. 1, pp. 8.1–8.6).

    Google Scholar 

  27. USGS. (2004). Asbestos, U.S. geological survey minerals yearbook 2003 (Vol. 1, pp. 8.1–8.12).

    Google Scholar 

  28. USGS. (2005). Asbestos, U.S. geological survey minerals yearbook 2006 (Vol. 1, pp. 8.1–8.6).

    Google Scholar 

  29. USGS. (2006). Asbestos, U.S. geological survey minerals yearbook 2005 (Vol. 1, pp. 8.1–8.6).

    Google Scholar 

  30. USGS. (2006). Worldwide asbestos supply and consumption trends from 1900 through 2003, U.S. geological survey (pp. 1–22).

    Google Scholar 

  31. USGS. (2007). Asbestos, U.S. geological survey minerals yearbook 2006 (Vol. 1, pp. 8.1–8.7).

    Google Scholar 

  32. USGS. (2008). Asbestos, U.S. geological survey minerals yearbook 2007 (Vol. 1, pp. 8.1–8.5).

    Google Scholar 

  33. USGS. (2009). Asbestos, U.S. geological survey minerals yearbook 2009 (Vol. 1, pp. 8.1–8.6).

    Google Scholar 

  34. USGS. (2010). Asbestos, U.S. geological survey minerals yearbook 2009 (Vol. 1, pp. 8.1–8.7).

    Google Scholar 

  35. USGS. (2011). Asbestos, U.S. geological survey minerals yearbook 2010 (Vol. 1, pp. 8.1–8.5).

    Google Scholar 

  36. USGS. (2012) Asbestos, U.S. geological survey minerals yearbook 2011 (Vol. 1, pp. 8.1–8.6).

    Google Scholar 

  37. USGS. (2013). Asbestos, U.S. geological survey minerals yearbook 2012 (Vol. 1, pp. 8.1–8.7).

    Google Scholar 

  38. USGS. (2014). Asbestos, U.S. geological survey minerals yearbook 2013 (Vol. 1, pp. 8.1–8.7).

    Google Scholar 

  39. Virta, R. L., & Flanagan D. M. (2015). Asbestos, U.S. geological survey minerals yearbook 2014 (Vol. 1, pp. 8.1–8.8).

    Google Scholar 

  40. Harris, L. V., & Kahwa, I. A. (2003). Asbestos: Old foe in 21st-century developing countries. Science of the Total Environment, 307, 1–9.

    Article  CAS  Google Scholar 

  41. The Factories Act. (1948). (Act No. 63 of 1948). International Labour Organization. Available at https://www.ilo.org/dyn/natlex/docs/WEBTEXT/32063/64873/E87IND01.htm.

  42. Hazardous and Other Wastes (Management and Transboundary) Rules. (2016). Central Pollution Control Board. Available at http://www.cpcb.nic.in/Hazardous_waste.php.

  43. Sengupta, B. (2008). Human health risk assessment studies in asbestos based industries in India. CPCB, PROBES/123/2008-2009.

    Google Scholar 

  44. Wu, W.-T., Lin, Y.-J., Li, C.-Y., Tsai, P.-J., Yang, C. Y., & Liou, S.-H. (2015). Cancer attributable to asbestos exposure in ship-breaking workers: A matched-cohort study. PLoS ONE, 10, 7.

    CAS  Google Scholar 

  45. WHO. (2014). Neira, M. Chrysotile asbestos. World Health Organization.

    Google Scholar 

  46. ILO. (1986). C162 asbestos convention. Geneva: International Labour Organization. Available: http://www.itcilo.it/english/actrav/ telearn/osh/legis/c162.htm.

  47. Lim, J. W., Koh, D., Khim, J. S. G., Le, G. V., & Takahashi, K. (2011). Preventive measures to eliminate asbestos-related diseases in Singapore. Safety and health at work, 2(3), 201–209.

    Article  CAS  Google Scholar 

  48. Turci, F., Tomatis, M., Mantegna, S., Cravotto, G., & Fubini, B. (2008). A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound. Ultra sonicssonochemistry, 15(4), 420–427.

    Article  CAS  Google Scholar 

  49. Valouma, A., Verganelaki, A., Maravelaki-Kalaitzaki, P., & Gidarakos, E. (2016). Chrysotile asbestos detoxification with a combined treatment of oxalic acid and silicates producing amorphous silica and biomaterial. Journal of Hazardous Materials, 305, 164–170.

    Article  CAS  Google Scholar 

  50. Granat, K., Nowak, D., Pigiel, M., Florczak, W., & Opyd, B. (2015). Application of microwave radiation in innovative process of neutralising asbestos-containing wastes. Archives of Civil and Mechanical Engineering, 15(1), 188–194.

    Article  Google Scholar 

  51. Gualtieri, F., Veratti, L., Tucci, A., & Esposito, L. (2012). Recycling of the product of thermal inertization of cement-asbestos in geopolymers. Construction and Building Materials, 31, 47–51.

    Article  Google Scholar 

  52. Gualtieri, A. F., Cavenati, C., Zanatto, I., Meloni, M., Elmi, G., & Gualtieri, M. L. (2008). The transformation sequence of cement–asbestos slates up to 1200 C and safe recycling of the reaction product in stoneware tile mixtures. Journal of Hazardous Materials, 152(2), 563–570.

    Article  CAS  Google Scholar 

  53. Brown, P., & Brown Paul W. (2004). In-situ treatment of asbestos-containing material. U.S. Patent Application 10/989,805.

    Google Scholar 

  54. Colangelo, F., Cioffi, R., Lavorgna, M., Verdolotti, L., & De Stefano, L. (2011). Treatment and recycling of asbestos-cement containing waste. Journal of Hazardous Materials, 195, 391–397.

    Article  CAS  Google Scholar 

  55. Xiaoming, L. I. U., & Linrong, X. U. (2011). Asbestos tailings as aggregates for asphalt mixture. Journal of Wuhan University of Technology—Materials Science Edition, 335–338.

    Google Scholar 

  56. Jantzen, C. M., & Pickett, J. B. (2000). How to recycle asbestos containing materials. WSRC-MS-2000–00194, Westinghouse Savannah River Company.

    Google Scholar 

  57. Luther, L. (2006). Disaster debris removal after hurricane Katrina: Status and associated issues. Congressional Research Service, Library of Congress.

    Google Scholar 

  58. World Bank Group. (2009). Good practice note: Asbestos: Occupational and community health issues.

    Google Scholar 

  59. Kusiorowski, R., Zaremba, T., Piotrowski, J., & Adamek, J. (2012). Thermal decomposition of different types of asbestos. Journal of Thermal Analysis and Calorimetry, 109(2), 693–704.

    Article  CAS  Google Scholar 

  60. Kodera, Y., Sakamoto, K., & Sekiguchi, H. (2013). Demonstration on thermal treatment of asbestos-containing disaster waste for safe disposal and energy recovery. In 7th International Symposium on Feedstock Recycling of Polymeric Materials, New Delhi, India.

    Google Scholar 

  61. Leonelli, C., Veronesi, P., Boccaccini, D., Rivasi, M., Barbieri, L., Andreola, F., et al. (2006). Microwave thermal inertization of asbestos containing waste and its recycling in traditional ceramics. Journal of Hazardous Materials, 135, 149–155.

    Article  CAS  Google Scholar 

  62. USGS. (2001). Some facts about asbestos (USGS Fact Sheet FS-012–01). (4 pp).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Asolekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R., Sontakke, M., Vivek, J.M., Rao, B., Asolekar, S.R. (2019). Environmental Sound Management of Asbestos-Containing Wastes Generated from Industries in India. In: Ghosh, S. (eds) Waste Management and Resource Efficiency. Springer, Singapore. https://doi.org/10.1007/978-981-10-7290-1_50

Download citation

Publish with us

Policies and ethics