Skip to main content

Performance Evaluation of In-vessel System for Co-composting of Septage

  • Conference paper
  • First Online:
Waste Management and Resource Efficiency

Abstract

The present study deals with the evaluation of in-vessel co-composting as a treatment option for septage management. Optimization of process parameters such as carbon: nitrogen (C/N) ratio, moisture content, pH, temperature and oxygen supply can accelerate the naturally occurring composting process. Since the C/N ratio of septage is <10, it needs to be composted with complementary waste having higher C/N. Hence, in this study, efforts were made to understand the compost dynamics of septage co-composting in a laboratory-scale in-vessel system. Co-composting of septage was done with mixed organic fraction which includes mainly paper waste, vegetable waste and food waste to increase the overall C/N ratio. The parameters such as pH, moisture content, temperature, carbon and nitrogen were monitored during the process. The results showed that the compost mixture has an initial C/N ratio of 20 and organic matter (OM) content of 83%. The OM content was reduced to 62% and C/N ratio to 11 after a composting operation of 20 days, which indicated the effective degradation of organic waste. Temperature above 55 °C for more than 5 days ensured significant pathogen inactivation during the composting process. Final compost quality indicated that it can be used as a fertilizer since it has enough organic and nutrient content for plants to grow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Census of India. (2011). Availability of type of Latrine facility 2001–2011. http://censusindia.gov.in/2011census/hlo/Data_sheet/India/Latrine.pdf.

  2. EAIestimate. (2016). Retrieved July 15, 2016, 11.30 pm from http://www.eai.in/ref/ae/wte/typ/clas/fecal_sludge.html.

  3. Diaz-Valbuena, L. R., et al. (2011). Methane, carbon dioxide, and nitrous oxide emissions from septic tank systems. Environmental Science and Technology, 45(7), 2741–2747.

    Article  CAS  Google Scholar 

  4. Verstraeten, I. M., et al. (2005). Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste, 107–117.

    Google Scholar 

  5. Romdhana, M. H., Lecomte, D., Ladevie, B., & Sablayrolles, C. (2009). Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Safety and Environmental Protection, 87(6), 377–386.

    Article  CAS  Google Scholar 

  6. Yen-Phi, V. T., Rechenburg, A., Vinneras, B., Clemens, J., & Kistemann, T. (2010). Pathogens in septage in Vietnam. Science of the Total Environment, 408(9), 2050–2053.

    Article  CAS  Google Scholar 

  7. Jönsson, H., Stintzing, A. R., Vinnerås, B., & Salomon, E. (2004). Guidelines on the use of urine and faeces in crop production. EcoSanRes Programme.

    Google Scholar 

  8. Vincent, J., Molle, P., Wisniewski, C., & Liénard, A. (2011). Sludge drying reed beds for septage treatment: Towards design and operation recommendations. Bioresource Technology, 102(17), 8327–8330.

    Article  CAS  Google Scholar 

  9. Lin, C. Y., Chang, F. Y., & Chang, C. H. (2000). Co-digestion of leachate with septage using a UASB reactor. Bioresource Technology, 73(2), 175–178.

    Article  CAS  Google Scholar 

  10. Lin, C. Y., & Chou, J. (1998). Aerobic digestion of septage. Bioresource Technology, 64(3), 219–224.

    Article  CAS  Google Scholar 

  11. Sanguinetti, G. S., Tortul, C., Garcia, M. C., Ferrer, V., Montangero, A., & Strauss, M. (2005). Investigating helminth eggs and Salmonella sp. in stabilization ponds treating septage. Water Science and Technology, 51(12), 239–247.

    Article  CAS  Google Scholar 

  12. Koottatep, T., Polprasert, C., Oanh, N. T. K., Heinss, U., Montangero, A., & Strauss, M. (2001). Potentials of vertical-flow constructed wetlands for septage treatment in tropical regions. Advances in water and wastewater treatment technology (pp. 315–323).

    Google Scholar 

  13. Tsalkatidou, M., Gratziou, M., & Kotsovinos, N. (2013). Septage treatment using a combined waste stabilization ponds—Vertical flow constructed wetland system. Desalination and Water Treatment, 51(13–15), 3011–3017.

    Article  CAS  Google Scholar 

  14. Ingallinella, A. M., Sanguinetti, G., Koottatep, T., Montangero, A., & Strauss, M. (2002). The challenge of faecal sludge management in urban areas-strategies, regulations and treatment options. Water Science and Technology, 46(10), 285–294.

    Article  CAS  Google Scholar 

  15. Cofie, O., Kone, D., Rothenberger, S., Moser, D., & Zubruegg, C. (2009). Co-composting of faecal sludge and organic solid waste for agriculture: Process dynamics. Water Research, 43, 4665–4675.

    Article  CAS  Google Scholar 

  16. Heinss, U., Larmie, S.A., & Strauss, M. (1998). Solid separation and pond systems for the treatment of faecal sludges in the tropics: Lessons learnt and recommendations for preliminary design. SANDEC Report No. 05/98. EAWAG/SANDEC, Duebendorf, Switzerland.

    Google Scholar 

  17. Koné, D., & Strauss, M. (2004). Low-cost options for treating faecal sludges (FS) in developing countries–Challenges and performance. In 9th International IWA Specialist Group Conference on Wetlands Systems for Water Pollution Control and to the 6th International IWA Specialist Group Conference on Waste Stabilisation Ponds, Avignon, France (Vol. 27).

    Google Scholar 

  18. Strauss, M., Larmie, S. A., Heinss, U., & Montangero, A. (2000). Treating faecal sludges in ponds. Water Science and Technology, 42(10), 283–290.

    Article  CAS  Google Scholar 

  19. USEPA. (1994). Guide to septage treatment and disposal guide to septage treatment disposal (September).

    Google Scholar 

  20. APHA (American Public Health Association). (1995). Standard methods for the examination of water and wastewater (17th ed.). Washington, DC: APHA.

    Google Scholar 

  21. Tiquia, S. M., & Tam, N. F. Y. (2000). Fate of nitrogen during composting of chicken litter. Environmental Pollution, 110(3), 535–541.

    Article  CAS  Google Scholar 

  22. Puyuelo, B., Ponsá, S., Gea, T., & Sánchez, A. (2011). Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere, 85, 653–659.

    Article  CAS  Google Scholar 

  23. Nayak, A. K., & Kalamdhad, A. S. (2013). Composting of sewage sludge based on different C/N ratios. Journal of Chemical, Biological and Physical Sciences, 3(3), 2251–2268.

    Google Scholar 

  24. Malińska, K. R. Y. S. T. Y. N. A., & Zabochnicka-Świątek, M. A. G. D. A. L. E. N. A. (2013). Selection of bulking agents for composting of sewage sludge. Environment Protection Engineering, 39(2).

    Google Scholar 

  25. Prabhu, S. R., & Thomas, G. V. (2002). Bioconversion of coir pith into value added organic resource and its application in agrihorticulture: Current status, prospects and perspective. Journal of Plantation Crops, 30, 1–17.

    Google Scholar 

  26. Thomas, A. R., Krithika, D., Gomathy, R. I., Kranert, M., & Philip, L. (2016). Optimization of bulking material for co-composting of septage. In Proceedings of IndoGerman Conference on Sustainability, Chennai, India, pp. 25–27.

    Google Scholar 

  27. Rynk, R., van de Kamp, M., Willson, G. B., Singley, M. E., & Richard, T. L., et al. (1992). On-farm composting handbook (p. 186). New York: Northeast Regional Agricultural Engineering Service.

    Google Scholar 

  28. Haug, R. T. (1993). The practical handbook of composting engineering. USA: CRC Press.

    Google Scholar 

  29. Mohee, R., & Mudhoo, A. (2005). Analysis of the physical properties of an in-vessel compostingmatrix. Powder Technology, 155(1), 92–99.

    Article  CAS  Google Scholar 

  30. Kalamdhad, A. S., & Kazmi, A. A. (2009). Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere, 74, 1327–1334.

    Article  CAS  Google Scholar 

  31. Jiang, J., Huang, Y., Liu, X., & Huang, H. (2014). The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting. Waste Management, 34(9), 1595–1602.

    Article  CAS  Google Scholar 

  32. Lopez, R. J., & Foster, M. (1985). Plant pathogen survival during the composting of agricultural wastes. In Composting of agriculture and other wastes. London: Elsevier Applied Science Publishers.

    Google Scholar 

  33. Liao, P. H., Jones, L., Lau, A. K., Walkemeyer, S., Egan, B., & Holbek, N. (1997). Composting of fish wastes in a full-scale in-vessel system. Bioresource Technology, 59(2–3), 163–168.

    Article  CAS  Google Scholar 

  34. Graves. (2000). Environmental engineering national engineering handbook. http://www.wcc.nrcs.usda.gov/ftpref/wntsc/AWM/neh637c2.pdf.

  35. Varma, V. S., Mayur, C., & Kalamdhad, A. (2014). Effects of bulking agent in composting of vegetable waste and leachate control using rotary drum composter. Sustainable Environment Research, 24(4).

    Google Scholar 

  36. Huang, G. F., Wong, J. W. C., We, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24, 805–813.

    Article  CAS  Google Scholar 

  37. Wong, J. W. C., Li, S. W. Y., & Wong, M. H. (1995). Coal fly ash as a composting material for sewage sludge: Effects on microbial activities. Environmental Technology, 16, 527–537.

    Article  CAS  Google Scholar 

  38. Vuorinen, A. H., & Saharinen, M. H. (1997). Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture, Ecosystems & Environment, 66, 19–29.

    Article  Google Scholar 

  39. Varma, V. S., & Kalamdhad, A. S. (2013). Composting of municipal solid waste (MSW) mixed with cattle manure. International Journal of Environmental Sciences, 3(6), 2068.

    Google Scholar 

  40. Hirai, M. F., Chamyasak, V., & Kubota, H. (1983). Standard measurement for compost maturity. BioCycle: Journal of Waste Recycling, 24(6), 54–56.

    Google Scholar 

  41. Zucconi, F., Forte, M., Monac, A., & De Bertoldi, M. (1981). Evaluating toxicity of immature compost. Biocycle, 22, 54–57.

    Google Scholar 

  42. Kalamdhad, A. S., & Kazmi, A. A. (2007). Rotary drum composting of mixed organic waste based on different C/N ratios. In Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India (pp. 258–265).

    Google Scholar 

  43. Zucconi, F., Monaco, A., Forte, M., & de Bertoldi, M. (1985). Phytotoxins during the stabilization of organic matter. In J. K. R. Grasser (Ed.), Composting of Agricultural and Other Wastes. Amsterdam, Netherlands: Elsevier Science.

    Google Scholar 

  44. Shiralipour, A., McConnell, D. B., & Smith, W. H. (1992). Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass and Bioenergy, 3, 261–266.

    Article  CAS  Google Scholar 

  45. Kim, J.-D., Park, J.-S., In, B.-H., Kim, D., & Namkoong, W. (2008). Evaluation of pilot-scale in-vessel composting for food waste treatment. Journal of Hazardous Materials, 154, 272–277.

    Article  CAS  Google Scholar 

  46. van Heerden, I., Cronje, C., Swart, S. H., & Kotze, J. M. (2002). Microbial, chemical and physical aspects of citrus waste composting. Bioresource Technol., 81(1), 71–76.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude towards DST-IGCS for funding this project. The authors also express sincere gratitude towards DST-INSPIRE for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Rachel Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, A.R., Praveen Rosario, A., Philip, L., Kranert, M. (2019). Performance Evaluation of In-vessel System for Co-composting of Septage. In: Ghosh, S. (eds) Waste Management and Resource Efficiency. Springer, Singapore. https://doi.org/10.1007/978-981-10-7290-1_43

Download citation

Publish with us

Policies and ethics