Skip to main content

Homotopy Analysis Method

  • Living reference work entry
  • First Online:
Encyclopedia of Ocean Engineering
  • 193 Accesses

Abstract

In this entry, we describe the basic ideas of the homotopy analysis method (HAM), an analytic approach to get convergent series solutions of strongly nonlinear problems, which recently attracts interests of more and more researchers. HAM fundamentally overcomes the excessive dependence on small parameters in the framework of perturbation theory, and its validity has nothing to do with small/large physical parameter of the studied nonlinear problem. So, it has a wide range of applications. In addition, HAM provides us great freedom to choose the base function, so that a better base function can be selected to approximate the solution of the problem more effectively. Furthermore, unlike all other analytical approximation methods, we can guarantee the convergence of solution series in a simple way in the framework of HAM. In general, HAM provides a new way of thinking that how to get the analytical approximate solution for nonlinear problems and opens up a new way for solving nonlinear problems (especially strong nonlinear problems without small parameters).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adomian G (1976) Nonlinear stochastic differential equations. J Math Anal Appl 55:44–52

    Article  MathSciNet  Google Scholar 

  • Adomian G (1991) A review of the decomposition method and some recent results for nonlinear equations. Comput Math Appl 21:101–127

    Article  MathSciNet  Google Scholar 

  • Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Awrejcewicz J, Andrianov IV, Manevitch LI (1998) Asymptotic approaches in nonlinear dynamics: new trends and applications. Springer, Berlin

    Book  Google Scholar 

  • Cheng J, Zhu SP, Liao SJ (2010) An explicit series approximation to the optimal exercise boundary of american put options. Commun Nonlinear Sci Numer Simul 15:114–158

    Article  MathSciNet  Google Scholar 

  • Dyke MV (1975) Perturbation methods in fluid mechanics. Parabolic, Stanford

    MATH  Google Scholar 

  • Hedges TS (1995) Regions of validity of analytical wave theories. Ice Proc Water Maritime Energy 112(2):111–114

    Google Scholar 

  • Hinch EJ (1991) Perturbation methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hunter JK, Vanden-Broeck JM (1983) Accurate computations for steep solitary waves. J Fluid Mech 136(136):63–71

    Google Scholar 

  • Karmishin AV, Zhukov AI, Kolosov VG (1990) Methods of dynamics calculation and testing for thin-walled structures. Mashinostroyenie, Moscow

    Google Scholar 

  • Liao SJ (1992) Proposed homotopy analysis techniques for the solution of nonlinear problem. PhD thesis, Shanghai Jiao Tong University

    Google Scholar 

  • Liao SJ (1997a) A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Non-Linear Mech. 32:81–22

    Article  MathSciNet  Google Scholar 

  • Liao SJ (1997b) Numerically solving nonlinear problems by the homotopy analysis method. Comput Mech 20(6):53–40

    Article  Google Scholar 

  • Liao SJ (1999) An explicit, totally analytic approximation of blasius’ viscous flow problems. Int J Non-Linear Mech 34:759–778

    Article  Google Scholar 

  • Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  • Liao SJ (2005) A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int J Heat Mass Transf 48:2529–2539

    Article  Google Scholar 

  • Liao SJ (2009) Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 14(4):983–997

    Article  MathSciNet  Google Scholar 

  • Liao SJ (2010a) On the relationship between the homotopy analysis method and euler transform. Commun Nonlinear Sci Numer Simul 15:1421–1431

    Article  MathSciNet  Google Scholar 

  • Liao SJ (2010b) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15(8):2003–2016

    Article  MathSciNet  Google Scholar 

  • Liao SJ (2011a) Homotopy analysis method in nonlinear differential equations. Springer, New York

    Google Scholar 

  • Liao SJ (2011b) On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves. Commun Nonlinear Sci Numer Simul 16(3):1274–1303

    Article  MathSciNet  Google Scholar 

  • Liao SJ, Magyari E (2006) Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones. Z Angew Math Phys 57:777–792

    Article  MathSciNet  Google Scholar 

  • Liao SJ, Tan Y (2007) A general approach to obtain series solutions of nonlinear differential equations. Stud Appl Math 119:297–354

    Article  MathSciNet  Google Scholar 

  • Liao SJ, Zhao YL (2016) On the method of directly defining inverse mapping for nonlinear differential equations. Numer Algorithms 72(4):989–1020

    Article  MathSciNet  Google Scholar 

  • Liao SJ, Xu DL, Stiassnie M (2016) On the steady-state nearly resonant waves. J Fluid Mech 794:175–199

    Article  MathSciNet  Google Scholar 

  • Liu Z, Liao SJ (2014) Steady-state resonance of multiple wave interactions in deep water. J Fluid Mech 742:664–700

    Article  MathSciNet  Google Scholar 

  • Liu Z, Xu DL, Li J, Peng T, Alsaedi A, Liao SJ (2015) On the existence of steady-state resonant waves in experiments. J Fluid Mech 763:1–23

    Article  Google Scholar 

  • Liu Z, Xu DL, Liao SJ (2018) Finite amplitude steady-state wave groups with multiple near resonances in deep water. J Fluid Mech 835:624–653

    Article  MathSciNet  Google Scholar 

  • Lyapunov AM (1992) General problem on stability of motion (English translation). Taylor & Francis, London

    Google Scholar 

  • Murdock JA (1991) Perturbations: theory and methods. Wiley, New York

    MATH  Google Scholar 

  • Nayfeh AH (1973) Perturbation methods. Wiley, New York

    MATH  Google Scholar 

  • Williams JM (1981) Limiting gravity waves in water of finite depth. Phil Trans R Soc A 302(1466):139–188

    Google Scholar 

  • Xu DL, Lin ZL, Liao SJ, Stiassnie M (2012) On the steady-state fully resonant progressive waves in water of finite depth. J Fluid Mech 710:379–418

    Article  MathSciNet  Google Scholar 

  • Yang XY, Dias F, Liao SJ (2018) On the steady-state resonant acoustic–gravity waves. J Fluid Mech 849:111–135

    Article  MathSciNet  Google Scholar 

  • Zhong X, Liao S (2017a) On the homotopy analysis method for backward/forward-backward stochastic differential equations. Numer Algorithms 76(2):487–519

    Article  MathSciNet  Google Scholar 

  • Zhong XX, Liao SJ (2017b) Approximate solutions of Von Kármán plate under uniform pressure-equations in differential form. Stud Appl Math 138(4):371–400

    Article  MathSciNet  Google Scholar 

  • Zhong XX, Liao SJ (2018a) Analytic approximations of Von Kármán plate under arbitrary uniform pressure-equations in integral form. Sci China Phys Mech Astron 61:014611

    Article  Google Scholar 

  • Zhong XX, Liao SJ (2018b) On the limiting stokes wave of extreme height in arbitrary water depth. J Fluid Mech 843:653–679

    Article  MathSciNet  Google Scholar 

  • Zhu SP (2006) An exact and explicit solution for the valuation of American put options. Quant Financ 6:229–242

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Lin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, X., Lin, Z. (2020). Homotopy Analysis Method. In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_271-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6963-5_271-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6963-5

  • Online ISBN: 978-981-10-6963-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics