Skip to main content

Alginate Application for Heart and Cardiovascular Diseases

  • Chapter
  • First Online:
Alginates and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 11))

Abstract

Alginate biomaterial has been extensively investigated and used for many biomedical applications due to its biocompatibility, low toxicity, relatively low cost, and ease of use. Its use toward cardiovascular application is no exception. Alginate is approved by the Food and Drug Administration (FDA) for various medical applications, such as a thickening, gel forming, and as a stabilizing agent for dental impression materials, wound dressings, and more. In this chapter, we describe the versatile biomedical applications of alginate, from its use as supporting extracellular matrices (ECM) in patients after acute myocardial infarction (MI), to its employment as a vehicle for stem cell delivery, to controlled delivery of multiple combinations of bioactive molecules. We also cover the application of alginate in creating solutions for treatment of other cardiovascular diseases by capitalizing on the natural properties of alginate to improve creation of heart valves, blood vessels, and drug and stem cell delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ueno M, Oda T (2014) Chapter six – biological activities of alginate. Adv Food Nutr Res 72:95–112

    Article  Google Scholar 

  2. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    Article  Google Scholar 

  3. Senni K et al (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    Article  Google Scholar 

  4. Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2012) Chapter 9 alginates as biomaterials in tissue engineering. Carbohydr Chem 37:227–258

    Article  Google Scholar 

  5. Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029

    Article  Google Scholar 

  6. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  Google Scholar 

  7. Rabbany SY et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408

    Article  Google Scholar 

  8. Murakami K et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    Article  Google Scholar 

  9. Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909

    Article  Google Scholar 

  10. Martin GSJS, Norman S (2000) Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101:2981–2988

    Article  Google Scholar 

  11. Westman PC et al (2016) Inflammation and remodeling after myocardial infarction. J Am Coll Cardiol 67:2050–2060

    Article  Google Scholar 

  12. Ruvinov E, Sapir Y, Cohen S (2012) Cardiac tissue engineering: principles, materials, and applications. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  13. Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR (2011) Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 13:245–267

    Article  Google Scholar 

  14. Hirt MN, Hansen A, Eschenhagen T (2014) Cardiac tissue engineering: state of the art. Circ Res 114:354–367

    Article  Google Scholar 

  15. Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A (2008) Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg 34:229–241

    Article  Google Scholar 

  16. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511

    Article  Google Scholar 

  17. Braunwald E (2013) Heart failure. JACC Heart Fail 1:1–20

    Article  Google Scholar 

  18. Burdick JA, Mauck RL, Gorman JH, Gorman RC (2013) Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 5:174–176

    Article  Google Scholar 

  19. Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913

    Article  Google Scholar 

  20. Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 58:2615–2629

    Article  Google Scholar 

  21. Yu J, Christman KL (2009) Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 137:180–187

    Article  Google Scholar 

  22. Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ (2009) The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751–756

    Article  Google Scholar 

  23. Sabbah HN et al (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail 1:252–258

    Article  Google Scholar 

  24. Lee LC et al (2013) Algisyl-LVR™ with coronary artery by-pass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol 168:2022–2028

    Article  Google Scholar 

  25. Lee RJ et al (2015) The feasibility and safety of Algisyl-LVR™ as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results. Int J Cardiol 199:18–24

    Article  Google Scholar 

  26. Randomized A Controlled study to evaluate algisyl-LVRâ„¢ as a method of left ventricular augmentation for heart failure (AUGMENT-HF). http://ClinicalTrials.gov, identifier NCT01311791

  27. Rocca et al (2016) An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats. Int J Cardiol 220:149–154

    Article  Google Scholar 

  28. Bhana B et al (2010) Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 105:1148–1160

    Google Scholar 

  29. Engler AJ et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802

    Article  Google Scholar 

  30. Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487

    Article  Google Scholar 

  31. Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95:1261–1269

    Article  Google Scholar 

  32. Singelyn JM et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59:751–763

    Article  Google Scholar 

  33. Tsur-Gang O et al (2009) The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30:189–195

    Article  Google Scholar 

  34. Landa N (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117:1388–1396

    Article  Google Scholar 

  35. Leor J et al (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 54:1014–1023

    Article  Google Scholar 

  36. Safety and Feasibility of the Injectable BL-1040 Implant. http://ClinicalTrials.gov, identifier NCT00557531

  37. Frey N et al (2014) Intracoronary delivery of injectable bioabsorbable scaffold (ik-5001) to treat left ventricular remodeling after st-elevation myocardial infarction: a first-in-man study. Circ Cardiovasc Interv 7:806–812

    Article  Google Scholar 

  38. IK-5001 for the Prevention of Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial Infarction (PRESERVATION 1). http://ClinicalTrials.gov, identifier NCT01226563

  39. Rao SV et al (2016) Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J Am Coll Cardiol 68:715–723

    Article  Google Scholar 

  40. Segers VF, Lee RT (2011) Biomaterials to enhance stem cell function in the heart. Circ Res 109:910–922

    Article  Google Scholar 

  41. Templin C, Luscher TF, Landmesser U (2011) Cell-based cardiovascular repair and regeneration in acute myo-cardial infarction and chronic ischemic cardiomyopathy – current status and future developments. Int J Dev Biol 55:407–417

    Article  Google Scholar 

  42. Singelyn JM, Christman KL (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3:478–486

    Article  Google Scholar 

  43. Roche ET et al (2014) Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35:6850–6858

    Article  Google Scholar 

  44. Levit RD (2013) Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2:e000367

    Article  Google Scholar 

  45. Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18:583–590

    Article  Google Scholar 

  46. Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23:4087–4094

    Article  Google Scholar 

  47. Leor J et al (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(Suppl. II):56–61

    Google Scholar 

  48. Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80:305–312

    Article  Google Scholar 

  49. Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cell Physiol 199:174–180

    Article  Google Scholar 

  50. Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162

    Article  Google Scholar 

  51. Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847

    Article  Google Scholar 

  52. Cardin AD, Weintraub HJ (1989) Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    Article  Google Scholar 

  53. Dvir T et al (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720–725

    Article  Google Scholar 

  54. Sapir Y, Polyak B, Cohen S (2014) Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology 25:014009

    Article  Google Scholar 

  55. Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170

    Article  Google Scholar 

  56. Maltais S, Tremblay JP (2010) The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 3:652–662

    Article  Google Scholar 

  57. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  Google Scholar 

  58. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280–289

    Article  Google Scholar 

  59. Ratajczak MZ et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 26:1166–1173

    Article  Google Scholar 

  60. Camussi G, Deregibus MC, Cantaluppi V (2013) Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 41:283–287

    Article  Google Scholar 

  61. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376

    Article  Google Scholar 

  62. Hao X et al (2007) Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185

    Article  Google Scholar 

  63. Banquet S et al (2011) Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation 124:1059–1069

    Article  Google Scholar 

  64. Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32:565–578

    Article  Google Scholar 

  65. Conti E et al (2004) Insulin like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265

    Article  Google Scholar 

  66. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106:1511–1519

    Article  Google Scholar 

  67. Hausenloy DJ, Yellon DM (2009) Cardioprotective growth factors. Cardiovasc Res 83:179–194

    Article  Google Scholar 

  68. Ruvinov E, Leor J, Cohen S (2010) The effects of controlled HGF delivery from an affinity binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31:4573–4582

    Article  Google Scholar 

  69. Dvir T et al (2009) Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A 106:14990–14995

    Article  Google Scholar 

  70. Rodness J et al (2016) VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomaterialia. pii: S1742-7061(16)30472-X. doi: 10.1016/j.actbio.2016.09.009. [Epub ahead of print]

    Google Scholar 

  71. Henri O et al (2016) Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133:1484–1497

    Article  Google Scholar 

  72. Kang HK et al (2016) Inducible HGF-secreting human umbilical cord blood-derived MSCs Produced via TALEN-mediated genome editing promoted angiogenesis. Mol Ther 24:1644–1654

    Article  Google Scholar 

  73. Bin D, Hockaday AL, Kang KH, Butcher JT (2013) 3d bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Google Scholar 

  74. Hockaday LA et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005

    Article  Google Scholar 

  75. Liu Y, Sakai S, Taya M (2016) Engineering tissues with a perfusable vessel-like network using endothelialized alginate hydrogel fiber and spheroid-enclosing microcapsules. Heliyon 2:e00067

    Article  Google Scholar 

  76. Kinoshita K et al (2016) Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnology Journal. doi: 10.1002/biot.201600083. [Epub ahead of print]

    Google Scholar 

  77. Jia W et al (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  Google Scholar 

  78. Kevadiya BD, Joshi GV, Bajaj HC (2010) Layered bionanocomposites as carrier for procainamide. Int J Pharm 388:280–286

    Article  Google Scholar 

  79. Beckerman Z et al (2014) A novel amiodarone-eluting biological glue for reducing post-operative atrial fibrillation: first animal trial. J Cardiovasc Pharmacol Ther 19:481–491

    Article  Google Scholar 

  80. Segale L, Mannina P, Giovannelli L, Muschert S, Pattarino F (2016) Formulation and coating of alginate and alginate-hydroxypropylcellulose pellets containing Ranolazine. J Pharm Sci S0022-3549(16):41633–41633. https://doi.org/10.1016/j.xphs.2016.08.001. [Epub ahead of print]

    Google Scholar 

  81. Lovich MA, Wei A, Maslov MY, Wu PI, Edelman ER (2011) Local epicardial inotropic drug delivery allows targeted pharmacologic intervention with preservation of myocardial loading conditions. J Pharm Sci 100(11):4993–5006

    Article  Google Scholar 

  82. Maslov MY, Edelman ER, Wei AE, Pezone MJ, Lovich MA (2013) High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery. J Control Release 171(2):201–207

    Article  Google Scholar 

  83. Maslov MY et al (2014) Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release 194:257–265

    Article  Google Scholar 

  84. Liu TC, Ismail S, Brennan O, Hastings C, Duffy GP (2013) Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents doxorubicin mediated toxicity. J Tissue Eng Regen Med 7:302–311

    Article  Google Scholar 

  85. Terakado S et al (2012) Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clin Exp Hypertens 34(2):99–106

    Article  Google Scholar 

  86. Ueno M et al (2012) Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin Exp Hypertens 34(5):305–310

    Article  Google Scholar 

  87. Moriya C et al (2013) Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens 35(8):607–613

    Article  Google Scholar 

  88. Chen YY et al (2010) Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats. Biomed Pharmacother 64:291–295

    Article  Google Scholar 

  89. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582

    Article  Google Scholar 

  90. Zhang P, Zhang H, Wang H, Wei Y, Hu S (2006) Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif Organs 30:86–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai T. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Z., Lam, M.T. (2018). Alginate Application for Heart and Cardiovascular Diseases. In: Rehm, B., Moradali, M. (eds) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-6910-9_7

Download citation

Publish with us

Policies and ethics