Skip to main content

Background of MIMO in Sleep Apnoea Monitoring

  • Chapter
  • First Online:
Microwave Sleep Apnoea Monitoring

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 648 Accesses

Abstract

In the last three chapters, we have presented the introduction of the wireless sleep monitoring and its significance in the healthcare sector, our vision for the microwave wireless monitoring system as the state-of-the-art technological development in the field followed by the comprehensive literature review of various wireless monitoring systems available in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. De Chazal, C. Heneghan, E. Sheridan, R. Reilly, P. Nolan, M. O’Malley, Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Trans. Biomed. Eng. 50, 686–696 (2003)

    Google Scholar 

  2. H.S.H. Dhillon, H. Singhal, H.B. Nemade, Respiration-movement-based sleep apnea monitor. Electron. Lett. 44, 398–399 (2008)

    Article  Google Scholar 

  3. R.E. Strube, Portable apnea and cardiac monitor, USA Patent 20080300499, Dec 2008

    Google Scholar 

  4. J. Huang, J. Liao, H. Chu, Respiration sensor, USA Patent 20090131809, May 2009

    Google Scholar 

  5. C.H. Rabb, Failed back syndrome and epidural fibrosis. Spine J. 10, 454–455 (2010)

    Article  Google Scholar 

  6. V.M. Lubecke, O. Borić-Lubecke, Wireless technologies in sleep monitoring, in Radio and Wireless Symposium, RWS 2009, pp. 135–138 (2009)

    Google Scholar 

  7. M.G. Martini, Wireless broadband multimedia health services: current status and emerging concepts, in IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008, PIMRC 2008, pp. 1–6 (2008)

    Google Scholar 

  8. R. Fensli, E. Gunnarson, T. Gundersen, A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation, in Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, pp. 407–412 (2005)

    Google Scholar 

  9. Z. Tafa, R. Stojanovic, Bluetooth-based approach to monitoring biomedical signals, in Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, pp. 415–420 (2006)

    Google Scholar 

  10. B. Lo, S. Thiemjarus, R. King, G. Yang, Body Sensor network: a wireless sensor platform for pervasive healthcare monitoring [online]. Available: http://www.nextwaveinterface.org.uk/centers/UbiCare/. Accessed: 24 Sept 2010

  11. B.C.V. Shnayder, K. Lorincz, T. Fulford Jones, M. Welsh, Sensor networks for medical care, in Technical Report TR-08-05, Division of Engineering and Applied Sciences, Harvard University (2005)

    Google Scholar 

  12. J.P. Baker, P.J. Bones, M.A. Lim, Wireless health monitor, in Electronics New Zealand Conference 2006, pp. 7–12 (2006)

    Google Scholar 

  13. J.W. Xiao Hu, Q. Yu, W. Liu, J. Qin, A wireless sensor network based on ZigBee for telemedicine monitoring system, in The 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, pp. 1367–1370 (2008)

    Google Scholar 

  14. J. Penders, J. Van de Molengraft, L. Brown, B. Grundlehner, B. Gyselinckx, C. Van Hoof, Potential and challenges of body area networks for personal health, in 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, pp. 6569–6572 (2009)

    Google Scholar 

  15. P. Yunjoong, P. Sang Kyu, L. Ho Yong, Performance of wireless body area network over on-human-body propagation channels, in Sarnoff Symposium, 2010 IEEE, pp. 1–4 (2010)

    Google Scholar 

  16. E. Jovanov, A survey of power efficient technologies for wireless body area networks, in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 3628–3628 (2008)

    Google Scholar 

  17. Body Area Networks (Wisar Lab) [online]. Available: http://www.wisar.org/research/body-area-networks.html. Accessed: 31 Dec 2010

  18. S. Suthaharan, Space time coded MIMO-OFDM systems for wireless communications: signal detection and channel estimation. Master Thesis, National University of Singapore (2003)

    Google Scholar 

  19. B. Latre, B. Braem, I. Moerman, C. Blondia, P. Demeester, A survey on wireless body area networks, in Wireless Networks, vol. 17 (Kluwer Academic Publishers, Hingham, MA, USA, 2011), pp. 1–18

    Google Scholar 

  20. C. Jae Myeong, K. Heau-Jo, C. Yong-Seok, A study on the wireless body area network applications and channel models, in Second International Conference on Future Generation Communication and Networking, pp. 263–266 (2008)

    Google Scholar 

  21. A. Pradubphon, S. Promwong, M. Chamchoy, P. Supanakoon, J.-I. Takada, Characterization of body shadowing effects on ultra-wideband propagation channel, in ICCAS2004, Bangkok, Thailand, 25–27 Aug 2004, pp. 219–222 (2004)

    Google Scholar 

  22. M. Di Renzo, R.M. Buehrer, J. Torres, Pulse shape distortion and ranging accuracy in UWB-based body area networks for fullbody motion capture and gait analysis, in IEEE Globecom, pp. 3775–3780 (2007)

    Google Scholar 

  23. L.W. Hanlen, D. Miniutti, D. Smith, D. Rodda, B. Gilbert, Co-channel interference in body area networks with indoor measurements at 2.4 GHz: distance-to-interferer is a poor estimate of received interference power. Int. J. Wirel. Inf. Netw. 113–125 (2010)

    Google Scholar 

  24. Y. Lee, Adaptive equalization and receiver diversity for indoor wireless data communications. Ph.D. Thesis, Stanford University (1997)

    Google Scholar 

  25. I. Khan, P.S. Hall, Multiple antenna reception at 5.8 and 10 GHz for body-centric wireless communication channels. IEEE Trans. Antennas Propag. 57 (2009)

    Google Scholar 

  26. I. Khan, Diversity and MIMO for body-centric wireless communication channels. Ph.D. Thesis, School of Electronics, Electrical, and Computer Engineering, University of Birmingham, UK (2009)

    Google Scholar 

  27. A. Taparugssanagorn, A. Rabbachin, M. Hämäläinen, J. Saloranta, J. Iinatti, A review of channel modelling for wireless body area network in wireless medical communications, in The 11th International Symposium on Wireless Personal Multimedia Communications (2008)

    Google Scholar 

  28. J. Takada, T. Aoyagi, K. Takizawa, N. Katayama, A. Kobayashi, K.Y. Yazdandoost, H. Li, R. Kohno, Static propagation and channel models in body area [Online]. Available: http://www.ap.ide.titech.ac.jp/publications/Archive/COST2100_TD%2808%29639%280810Takada%29.pdf. Accessed 30 Nov 2010

  29. A. Fort, J. Ryckaert, C. Desset, P. De Doncker, L.V. Biesen, Ultra wideband channel model for communication around the human body. IEEE J. Select. Areas Commun. 24, 927–933 (2006)

    Article  Google Scholar 

  30. K.Y. Yazdandoost, K. Sayrafian-Pour, Channel model for body area network [online]. Available: https://mentor.ieee.org/802.15/dcn/08/15-08-0780-12-0006-tg6-channel-model.pdf. Accessed 30 Nov 2010

  31. Front matter, in Wireless Body Area Networks (Pan Stanford Publishing, 2011)

    Google Scholar 

  32. D. Smith, J. Zhang, L. Hanlen, D. Miniutti, D. Rodda, B. Gilbert, A simulator for the dynamic on-body area propagation channel [online]. Available: http://cecs.anu.edu.au/seminars/media/889_23_07_09_David_Smith_Slides.pdf. Accessed 13 Apr 2011

  33. D. Smith, L. Hanlen, J. Zhang, D. Miniutti, D. Rodda, B. Gilbert, Characterization of the dynamic narrowband on-body to off-body area channel, in IEEE International Conference on Communications ICC’09, pp. 1–6 (2009)

    Google Scholar 

  34. R. D’Errico, L. Ouvry, A statistical model for on-body dynamic channels. Int. J. Wirel. Inf. Netw. 17, 92–104 (2010)

    Google Scholar 

  35. S.O. Rice, Mathematical analysis of random noise. Bell Syst. Tech. J. 282–333 (1944)

    Google Scholar 

  36. S.O. Rice, Mathematical analysis of random noise. Bell Sys. Tech. J. 46–156 (1945)

    Google Scholar 

  37. A. Fort, C. Desset, P. Wambacq, L.V. Biesen, Indoor body-area channel model for narrowband communications. IET Microw. Antennas Propag. 1, 1197–1203 (2007)

    Article  Google Scholar 

  38. R.J.C. Bultitude, G.K. Bedal, Propagation characteristics on microcellular urban mobile radio channels at 910 MHz, in WESCANEX 88: Digital Communications Conference Proceedings, pp. 152–160 (1988)

    Google Scholar 

  39. T.S. Rappaport, Characterization of UHF multipath radio channels in factory buildings. Antennas Propag. IEEE Trans. 37, 1058–1069 (1989)

    Article  Google Scholar 

  40. Eb/N0 vs BER for BPSK over Rician fading channel [online]. Available: http://www.gaussianwaves.com/2012/07/ebn0-vs-ber-for-bpsk-over-rician-fading-channel/. Accessed 1 Nov 2012

  41. T.S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, New Jersey, 1996)

    MATH  Google Scholar 

  42. S. Medawar, P. Handel, P. Zetterberg, Ricean K-factor estimation and investigation of urban wireless measurements, in 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), pp. 1–4 (2012)

    Google Scholar 

  43. A. Fort, J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, L. Van Biesen, Ultra-wideband channel model for communication around the human body. Sel. Areas Commun. IEEE J. 24, 927–933 (2006)

    Article  Google Scholar 

  44. D. Gesbert, M. Shafi, S. Da-shan, P.J. Smith, A. Naguib, From theory to practice: an overview of MIMO space-time coded wireless systems. Sel. Areas Commun. IEEE J. 21, 281–302 (2003)

    Article  Google Scholar 

  45. I. Khan, P.S. Hall, Experimental evaluation of MIMO capacity and correlation for narrowband body-centric wireless channels. IEEE Trans. Antennas Propag. 58, 195–202 (2010)

    Article  Google Scholar 

  46. Personal Area Network (PAN) [online]. Available: http://searchmobilecomputing.techtarget.com/definition/personal-area-network. Accessed 2 May 2011

  47. D. Neirynck, C. Williams, A. Nix, M. Beach, Personal area networks with line-of-sight MIMO operation, in IEEE 63rd Vehicular Technology Conference, VTC 2006-Spring (2006)

    Google Scholar 

  48. A.J. Johansson, J. Karedal, F. Tufvesson, A.F. Molisch, MIMO channel measurements for personal area networks, in Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, vol. 1, pp. 171–176 (2005)

    Google Scholar 

  49. D. Neirynck, C. Williams, A. Nix, M. Beach, Exploiting MIMO in the personal sphere. IET Proc. Microw. Antenna Propag. (2007)

    Google Scholar 

  50. D. Neirynck, C. Williams, A. Nix, M. Beach, Experimental capacity analysis for virtual array antennas in personal and body area networks, in International Workshop on Wireless Adhoc Networks (2005)

    Google Scholar 

  51. K. Sakaguchi, H.Y. Chua, K. Araki, MIMO channel capacity in an indoor line-of-sight environment, in IEICE Transactions on Communication, vol. E88-B (2005)

    Google Scholar 

  52. F. Rashid-Farrokhi, A. Lozano, G. Foschini, R. Valenzela, Spectral efficiency of wireless systems with multiple transmit and receive antennas, in IEEE International Symposium, PIMRC, pp. 373–377 (2000)

    Google Scholar 

  53. G.D. Menghwar, C.F. Mecklenbräuker, User cooperation versus multiple-access-channel with dedicated-relay using network coding, in Third Mosharaka International Conference on Communications, Computers and Applications, Amman, Jordan (2009)

    Google Scholar 

  54. M.K. Marunganti, Experimental study of cooperative communication using software defined radios, Master of science thesis, Cleveland State University (2007)

    Google Scholar 

  55. C. Shuguang, A.J. Goldsmith, A. Bahai, Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. Sel. Areas Commun. IEEE J. 22, 1089–1098 (2004)

    Article  Google Scholar 

  56. S.M. Alamouti, A simple transmitter diversity scheme for wireless communications. IEEE J. Sel. Areas Commun. 16, 1451–1458 (1998)

    Article  Google Scholar 

  57. J. Jing, J.S. Thompson, S. Hongjian, A singular-value-based adaptive modulation and cooperation scheme for virtual-MIMO systems. Veh. Technol. IEEE Trans. 60, 2495–2504 (2011)

    Article  Google Scholar 

  58. J. Jiang, J.S. Thompson, H. Sun, P.M. Grant, Performance assessment of virtual multiple-input multiple-output systems with compress-and-forward cooperation. Commun. IET 6, 1456–1465 (2012)

    Article  MathSciNet  Google Scholar 

  59. Z. Rafique, B.-C. Seet, A. Al-Anbuky, Performance analysis of cooperative virtual MIMO systems for wireless sensor networks. Sensors 13(6), 7033–7052 (2013). (Sensors 2013, vol. 6 (2013), pp. 7033–7052)

    Google Scholar 

  60. P.W. Wolniansky, G.J. Foschini, G.D. Golden, R. Valenzuela, V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel, in 1998 URSI International Symposium on Signals, Systems, and Electronics, 1998. ISSSE 98. pp. 295–300 (1998)

    Google Scholar 

  61. S.K. Jayaweera, V-BLAST-based virtual MIMO for distributed wireless sensor networks. Commun. IEEE Trans. 55, 1867–1872 (2007)

    Article  MathSciNet  Google Scholar 

  62. C. Fragouli, E. Soljanin, Network coding fundamentals, in Foundations and Trends ® in Networking, vol. 2 (2007)

    Google Scholar 

  63. R. Ahlswede, C. Ning, S.Y.R. Li, R.W. Yeung, Network information flow. Inf. Theory IEEE Trans. 46, 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. D. Platz, D.H. Woldegebreal, H. Karl, Random network coding in wireless sensor networks: energy efficiency via cross-layer approach, in IEEE 10th International Symposium on Spread Spectrum Techniques and Applications, 2008. ISSSTA’08, pp. 654–660 (2008)

    Google Scholar 

  65. G.E. Arrobo, R.D. Gitlin, New approaches to reliable wireless body area networks, in 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), pp. 1–6 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemai Chandra Karmakar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, N.C., Yang, Y., Rahim, A. (2018). Background of MIMO in Sleep Apnoea Monitoring. In: Microwave Sleep Apnoea Monitoring . Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6901-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6901-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6900-0

  • Online ISBN: 978-981-10-6901-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics