Skip to main content

New Perspective on mTOR Pathways: A New Target of Depression

  • Chapter
  • First Online:
Understanding Depression

Abstract

Major depressive disorder (MDD) is a severe psychiatric condition that affects a large number of individuals worldwide. The understanding of the pathophysiology of this disorder is still not well elucidated, and considering that acute availability of monoamines in the synapses does not provide an equally acute response, and a large number of patients do not respond satisfactorily, new research has emerged in the search for markers and biological mechanisms underlying MDD. Clinical and experimental studies have been suggesting that mammalian target of rapamycin (mTOR) signaling is compromised in pathophysiology of MDD. In addition, this pathway is required for the rapid antidepressant action of ketamine, an antagonist of N-methyl-d-aspartate (NMDA) receptor. Thus, this chapter will highlight clinical and experimental evidences of the role of mTOR signaling pathway in the pathophysiology and treatment of MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abelaira HM, Réus GZ, Ignácio ZM, Dos Santos MA, de Moura AB, Matos D, Demo JP, da Silva JB, Danielski LG, Petronilho F, Carvalho AF, Quevedo J. Ketamine exhibits different neuroanatomical profile after mammalian target of rapamycin inhibition in the prefrontal cortex: the role of inflammation and oxidative stress. Mol Neurobiol. 2016;54(7):5335–46.

    Article  Google Scholar 

  • Abelaira HM, Réus GZ, Quevedo J. Animal models as tools to study the pathophysiology of depression. Rev Bras Psiquiatr. 2013;35(Suppl 2):S112–20.

    Article  Google Scholar 

  • Akinfiresoye L, Tizabi Y. Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology. 2013;230:291–8.

    Article  CAS  Google Scholar 

  • Banerjee R, Ghosh AK, Ghosh B, Bhattacharyya S, Mondal AC. Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain. Clin Med Insights Pathol. 2013;6:1–11.

    Article  Google Scholar 

  • Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, Rothenhäusler HB, Theokas S, Robier C, Mangge H, Reicht G, Hlade P, Meinitzer A. Branched-chain amino acids as new biomarkers of major depression - a novel neurobiology of mood disorder. PLoS One. 2016;11:e0160542.

    Article  Google Scholar 

  • Benedetti F, Dallaspezia S, Lorenzi C, Pirovano A, Radaelli D, Locatelli C, Poletti S, Colombo C, Smeraldi E. Gene-gene interaction of glycogen synthase kinase 3-β and serotonin transporter on human antidepressant response to sleep deprivation. J Affect Disord. 2012;136:514–9.

    Article  CAS  Google Scholar 

  • Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira Á, Colla AR, Rodrigues AL. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res. 2012;234:137–48.

    Article  CAS  Google Scholar 

  • Boni J, Abbas R, Leister C, Burns J, Jordan R, Hoffmann M, DeMaio W, Hug B. Disposition of desipramine, a sensitive cytochrome P450 2D6 substrate, when coadministered with intravenous temsirolimus. Cancer Chemother Pharmacol. 2008;64:263–70.

    Article  Google Scholar 

  • Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry. 2006;19:25–33.

    Article  Google Scholar 

  • Chandran A, Iyo AH, Jernigan CS, Legutko B, Austin MC, Karolewicz B. Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;40:240–5.

    Article  CAS  Google Scholar 

  • Chaves Filho AJM, Macedo D, de Lucena DF. Ketamine’s legacy: new targets for the development of rapid onset antidepressant drugs. JSM Anxiety Depress. 2016;1:1013.

    Google Scholar 

  • Corradetti MN, Inoki K, Guan KL. The stress-induced proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem. 2005;280:9769–72.

    Article  CAS  Google Scholar 

  • Denk MC, Rewerts C, Holsboer F, Erhardt-Lehmann A, Turck C. Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation. Am J Psychiatry. 2011;68:751–2.

    Article  Google Scholar 

  • Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72.

    Article  CAS  Google Scholar 

  • Duman RS, Monteggia LM. A neurotrophic model for stress related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    Article  CAS  Google Scholar 

  • Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, Newton SS, Duman RS. A negative regulator of MAP kinase causes depressive behavior. Nat Med. 2010;16:1328–32.

    Article  CAS  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804–15.

    Article  CAS  Google Scholar 

  • Dwivedi Y, Rizavi HS, Zhang H, Roberts RC, Conley RR, Pandey GN. Modulation in activation and expression of phosphatase and tensin homolog on chromosome ten, Akt1, and 3-phosphoinositide-dependent kinase 1: further evidence demonstrating altered phosphoinositide 3-kinase signaling in postmortem brain of suicide subjects. Biol Psychiatry. 2010;67:1017–25.

    Article  CAS  Google Scholar 

  • Fang ZH, Lee CH, Seo MK, Cho H, Lee JG, Lee BJ, Park SW, Kim YH. Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neurosci Res. 2013;76:187–94.

    Article  CAS  Google Scholar 

  • Fernstrom JD. Branched-chain amino acids and brain function. J Nutr. 2005;135(6 Suppl):1539S–46S.

    Article  CAS  Google Scholar 

  • Goswami DB, Jernigan CS, Chandran A, Iyo AH, May WL, Austin MC, Stockmeier CA, Karolewicz B. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;43:126–33.

    Article  CAS  Google Scholar 

  • Harraz MM, Tyagi R, Cortés P, Snyder SH. Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation. Mol Psychiatry. 2016;21:313–9.

    Article  CAS  Google Scholar 

  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926–45.

    Article  CAS  Google Scholar 

  • Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.

    Article  CAS  Google Scholar 

  • Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K. Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology. 2016;233:2077–97.

    Article  CAS  Google Scholar 

  • Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol. 2016;82:1280–90.

    Article  Google Scholar 

  • Ignácio ZM, Réus GZ, Abelaira HM, Quevedo J. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression. Neuroscience. 2014;275:455–68.

    Article  Google Scholar 

  • Jeon SH, Kim SH, Kim Y, Kim YS, Lim Y, Lee YH, Shin SY. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem Biophys Res Commun. 2011;413:311–7.

    Article  CAS  Google Scholar 

  • Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:1774–9.

    Article  CAS  Google Scholar 

  • Karege F, Perroud N, Burkhardt S, Schwald M, Ballmann E, La Harpe R, Malafosse A. Alteration in kinase activity but not in protein levels of protein kinase B and glycogen synthase kinase-3beta in ventral prefrontal cortex of depressed suicide victims. Biol Psychiatry. 2007;61:240–5.

    Article  CAS  Google Scholar 

  • Kavalidou K, De Leo D. Are low brain derived neurotrophic factor levels in the blood a biological marker of suicide risk in psychiatric patients? A systematic review. J Neurol Res. 2013;3(1):12–9.

    Google Scholar 

  • Kessler RC. The costs of depression. Psychiatr Clin North Am. 2012;35(1):1–14.

    Article  Google Scholar 

  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    Article  CAS  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–64.

    Article  CAS  Google Scholar 

  • Lin CJ, Robert F, Sukarieh R, Michnick S, Pelletier J. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling. Cancer Res. 2010;70:3199–208.

    Article  CAS  Google Scholar 

  • Liu S, Li T, Liu H, Wang X, Bo S, Xie Y, Bai X, Wu L, Wang Z, Liu D. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav Brain Res. 2016;302:191–9.

    Article  Google Scholar 

  • Lu Y, Wang C, Xue Z, Li C, Zhang J, Zhao X, Liu A, Wang Q, Zhou W. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int J Neuropsychopharmacol. 2014;18:110.

    Google Scholar 

  • Luoni A, Macchi F, Papp M, Molteni R, Riva MA. Lurasidone exerts antidepressant properties in the chronic mild stress model through the regulation of synaptic and neuroplastic mechanisms in the rat prefrontal cortex. Int J Neuropsychopharmacol. 2014;18(4):pyu061.

    PubMed  Google Scholar 

  • Monirujjaman M, Ferdouse A. Metabolic and physiological roles of branched-chain amino acids. Adv Mol Biol. 2014;2014:364976.

    Article  Google Scholar 

  • Moretti M, Budni J, Freitas AE, Rosa PB, Rodrigues AL. Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res. 2014;48:16–24.

    Article  Google Scholar 

  • Ota KT, Liu RJ, Voleti B, Maldonado-Aviles JG, Duric V, Iwata M, Dutheil S, Duman C, Boikess S, Lewis DA, Stockmeier CA, DiLeone RJ, Rex C, Aghajanian GK, Duman RS. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med. 2014;20:531–5.

    Article  CAS  Google Scholar 

  • Pałucha-Poniewiera A, Szewczyk B, Pilc A. Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Neuropharmacology. 2014;82:59–68.

    Article  Google Scholar 

  • Park SW, Lee JG, Seo MK, Lee CH, Cho HY, Lee BJ, Seol W, Kim YH. Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons. Int J Neuropsychopharmacol. 2014;17:1831–46.

    Article  CAS  Google Scholar 

  • Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsycho-pharmacol 2008;33:88–109.

    Article  Google Scholar 

  • Réus GZ, Abelaira HM, Stringari RB, Fries GR, Kapczinski F, Quevedo J. Memantine treatment reverses anhedonia, normalizes corticosterone levels and increases BDNF levels in the prefrontal cortex induced by chronic mild stress in rats. Metab Brain Dis. 2012;27:175–82.

    Article  Google Scholar 

  • Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry. 2002;7:609–16.

    Article  CAS  Google Scholar 

  • Schmidt HD, Banasr M, Duman RS. Future antidepressant targets: neurotrophic factors and related signaling cascades. Drug Discov Today Ther Strateg. 2008;5:151–6.

    Article  Google Scholar 

  • Tang J, Xue W, Xia B, Ren L, Tao W, Chen C, Zhang H, Wu R, Wang Q, Wu H, Duan J, Chen G. Involvement of normalized NMDA receptor and mTOR related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep. 2015;5:13573.

    Article  CAS  Google Scholar 

  • Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 1997;134:319–29.

    Article  CAS  Google Scholar 

  • Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52:90–110.

    Article  CAS  Google Scholar 

  • Workman ER, Niere F, Raab-Graham KF. mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling. Neuropharmacology. 2013;73:192–203.

    Article  CAS  Google Scholar 

  • World Health Organization. The global burden of disease: 2004 update. Geneva: WHO; 2008.

    Google Scholar 

  • Yang C, YM H, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci. 2013;118:3–8.

    Article  Google Scholar 

  • Zhong P, Wang W, Pan B, Liu X, Zhang Z, Long JZ, Zhang HT, Cravatt BF, Liu QS. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology. 2014;39:1763–76.

    Article  CAS  Google Scholar 

  • Zhu W, Wang S, Liu M, Shi H, Zhang R, Liu J, Ding Z, Lu L. Glycine site N-methyl-D-aspartate receptor antagonist 7-CTKA produces rapid antidepressant-like effects in male rats. J Psychiatry Neurosci. 2013;38:306–16.

    Article  Google Scholar 

  • Zhuang F, Li M, Gao X, Wang Y, Wang D, Ma X, Ma T, Gu S. The antidepressant-like effect of alarin is related to TrkB-mTOR signaling and synaptic plasticity. Behav Brain Res. 2016;313:158–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislaine Z. Réus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Réus, G.Z., Ignácio, Z.M., Abelaira, H.M., Quevedo, J. (2018). New Perspective on mTOR Pathways: A New Target of Depression. In: Kim, YK. (eds) Understanding Depression . Springer, Singapore. https://doi.org/10.1007/978-981-10-6580-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6580-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6579-8

  • Online ISBN: 978-981-10-6580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics