Skip to main content

GFDM System PAPR Reduction Based on MCT Method

  • Conference paper
  • First Online:
  • 148 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 463))

Abstract

The most serious problems of OFDM are the high Out-Of-Band (OOB) Radiation and high Peak-to-Average Power Ratio (PAPR). So that it can’t use the fragmented spectrum and will also increase the system operating costs, reduce efficiency as well. Thus the Generalized Frequency Division Multiplexing (GFDM) comes into being as a candidate for the fifth generation (5G) wireless communication. GFDM can reduce the out-of-band radiation effectively but still suffer from pretty high PAPR. To solve this problem, studies have shown Clipping method can be used to reduce PAPR. However the computational complexity will increase along with the increase of the subcarrier number, and lower clipping threshold will cause severer impact on the signal distortion which is because the Clipping causes irreversible loss on large signals. In this paper, we propose a new method called majorizing compressing and expanding technique (MCT) to suppress the high PAPR of GFDM system. This method compresses high power signals, and expands low power signals at the transmitter and makes the inverse transformation at the receiver, so that the signal amplitude fluctuation is smaller and closer to the average, thus reduces the PAPR. Our simulations also reveal that there is a tradeoff between PAPR reduction and bit error rate(BER) performance. And a comparison between Clipping and MCT will be given to show that MCT performs better.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bingham, J.: Multicarrier modulation for data transmission: an idea whose time has come. IEEE Commun. Mag. 28(5), 5–14 (1990)

    Google Scholar 

  2. Nekovee, M.: Quantifying performance requirements of vehicle-to-vehicle communication protocols for rear-end collision avoidance. In: IEEE 69th Vehicular Technology Conference 2009, VTC Spring 2009, pp. 1–5 (2009)

    Google Scholar 

  3. Krondorf, M., et al.: ORACLE-opportunistic radio communications in unlicensed environments. White paper (2007)

    Google Scholar 

  4. Sendrei, L., et al.: Iterative receiver for clipped GFDM signals. In: International Conference Radioelektronika, pp. 1–4 (2014)

    Google Scholar 

  5. Fettweis, G., Krondorf, M., Bittner, S.: GFDM - generalized frequency division multiplexing. In: IEEE Vehicular Technology Conference, pp. 1–4. IEEE (2009)

    Google Scholar 

  6. Das, S.S., Tiwari, S.: Discrete fourier transform spreading-based generalised frequency division multiplexing. Electron. Lett. 51(10), 789–791 (2015)

    Google Scholar 

  7. Yin, H., et al.: Weighted tone reservation for OFDM PAPR reduction, US, US7796498 (2010)

    Google Scholar 

  8. METIS: mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project. www.metis2020.com

  9. Fettweis, G., Krondorf, M., Bittner, S.: GFDM-generalized frequency division multiplexing. In: Proceedings of IEEE 69th Vehicular Technology Conference, pp. 1–4. IEEE, Barcelona (2009)

    Google Scholar 

  10. Slimane, S.B.: Reducing the peak-to-average power ratio of OFDM signals through precoding. IEEE Trans. Veh. Technol. 56(2), 686–695 (2007)

    Google Scholar 

  11. Michailow, N., Fettweis, G.: Low peak-to-average power ratio for next generationcellular systems with generalized frequency division multiplexing. In: Proceedings of International Symposium on Intelligent Signal Processing and Communications Systems, pp. 651–655. IEEE, Naha (2013)

    Google Scholar 

  12. Li, S., Zhao, Y., He, L., Wu, Z., Li, Y.: Design and performance analysis of a GFDM-DCSK communication system. In: IEEE 13th CCNC, Las Vegas, NV, US, pp. 809–810, January 2016

    Google Scholar 

  13. Li, S., Zhao, Y., Wu, Z.: Design and analysis of an OFDM based differential chaos shift keying communication system. J. Commun. 10(3), 199–205 (2015)

    Google Scholar 

  14. Matthe, M., Mendes, L.L, Fettweis, G.: Space-time coding for generalized frequency division multiplexing. In: 20th European Wireless Conference Proceedings of European Wireless 2014, pp. 1–5. IEEE, Barcelona (2014)

    Google Scholar 

  15. Datta, R., Michailow, N., Lentmaier, M., et al.: GFDM interference cancellation for flexible cognitive radio PHY design. In: Proceedings of IEEE Vehicular Technology Conference, pp. 1–5. IEEE, Bucharest (2012)

    Google Scholar 

  16. Sharifian, Z., et al.: Polynomial-based compressing and iterative expanding for PAPR reduction in GFDM. In: Electrical Engineering. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Wu, C., Wu, L., Li, C. (2019). GFDM System PAPR Reduction Based on MCT Method. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_112

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_112

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics