Skip to main content

Emotion and Ambiguity: A Study

  • Chapter
  • First Online:
Musicality of Human Brain through Fractal Analytics

Part of the book series: Signals and Communication Technology ((SCT))

  • 817 Accesses

Abstract

This chapter explores the utility of non linear source modeling for categorization and classification of evoked emotion from instrumental clips of Hindustani raga and their possible impacts in human brain. Hindustani Music (HM) has been known to convey a variety of emotional responses to the listeners since time immemorial—but neural processing of these emotional attributes is largely unrevealed. The detection of emotional cues from Hindustani Classical music is a demanding task due to the inherent ambiguity present in the different ragas, which makes it difficult to identify any particular emotion from a certain raga. This necessitates the use of a very high resolution mathematical microscope to procure information about the inherent complexities and time series fluctuations that constitute an acoustic and EEG signal. We chose  3 min alaap (opening) portion of six conventional ragas of Hindustani classical music namely, “Darbari Kanada”, “Yaman”, “Mian ki Malhar”, “Durga”, “Jay Jayanti” and “Hamswadhani” played in three different musical instruments (sitar, sarod and flute) by three maestros of HM. The first three ragas correspond to the negative dimension of the Russel’s emotional sphere, while the last three belong to the positive dimension (conventionally). Most of the musical instruments have resonators that are only approximately harmonic in nature, and their operation and harmonic sound spectrum both rely upon the extreme nonlinearity of their driving mechanisms. Such instruments might be described as ‘essentially nonlinear’. Hence, MFDFA (Multifractal Detrended Fluctuation Analysis) technique was utilized to assess the inherent complexity of the musical clips which proves to be an important parameter for classification of emotional attributes in musical clips. Next, EEG experiment was conducted on a pool of participants who were made to listen to these sets of musical clips of 2 min duration each. The brain response corresponding to each emotional clip analyzed with MFDFA technique is expected to elicit emotion specific arousal activities in different lobes of the brain. The multifractal spectral width obtained from alpha/theta frequency ranges of EEG data can be developed as a parameter for the development of an automated emotion recognition system. The study may prove to have far reaching implications in the development of an automated emotion classifier algorithm in future.

Learning to live with ambiguity is learning to live with

how life really is, full of complexities and strange surprises

—James Hollis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balkwill, L. L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music perception: an interdisciplinary journal, 17(1), 43–64.

    Article  Google Scholar 

  • Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., et al. (2016). Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals. Physica A, 444, 110–120.

    Article  Google Scholar 

  • Banerjee, A., Sanyal, S., Sengupta, R., & Ghosh, D. (2017). Universality and Domain Specificity of Emotion-A Quantitative Non Linear EEG Based Approach, Journal of Neurology and Neuroscience, 8(2:178), 1–18.

    Google Scholar 

  • Belle, S., Joshi, R., & Rao, P. (2009). Raga identification by using swara intonation. Journal of ITC Sangeet Research Academy, 23.

    Google Scholar 

  • Bhaduri, S., & Ghosh, D. (2016). Speech music and multfractality. Current Science, 110(9), 1817–1822.

    Article  Google Scholar 

  • Bhattacharya, J., Petsche, H., & Pereda, E. (2001). Long-range synchrony in the γ band: role in music perception. Journal of Neuroscience, 21(16), 6329–6337.

    Google Scholar 

  • Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cerebral Cortex24(11), 2981–2990.

    Google Scholar 

  • Burridge, R., Kappraff, J., & Morshedi, C. (1982). The sitar string, a vibrating string with a one-sided inelastic constraint. SIAM Journal on Applied Mathematics, 42(6), 1231–1251.

    Article  MathSciNet  MATH  Google Scholar 

  • Costa, T., Rognoni, E., & Galati, D. (2006). EEG phase synchronization during emotional response to positive and negative film stimuli. Neuroscience Letters, 406(3), 159–164.

    Article  Google Scholar 

  • Daly, I., Malik, A., Hwang, F., Roesch, E., Weaver, J., Kirke, A., … & Nasuto, S. J. (2014). Neural correlates of emotional responses to music: an EEG study. Neuroscience letters, 573, 52–57.

    Google Scholar 

  • Daly, I., Nasuto, S. J., & Warwick, K. (2012). Brain computer interface control via functional connectivity dynamics. Pattern Recognition, 45(6), 2123–2136.

    Article  Google Scholar 

  • Das, A., & Das, P. (2006). Fractal analysis of different eastern and western musical instruments. Fractals, 14(03), 165–170.

    Article  Google Scholar 

  • Datta, A K., Sengupta, R., Dey, N., & Nag, D. (2008). Study of Non Linearity in Indian Flute by Fractal Dimension Analysis, Ninaad (J. ITC Sangeet Research Academy), 22, 1–11, ISSN 0973-3787.

    Google Scholar 

  • Datta, A. K., Sengupta, R., & Dey, N. (2012). Capturing the Essence of Raga from Hindustani Singing: an Objective Approach. Journal of Acoustical Society of India, 39(1), 20–24.

    Google Scholar 

  • Eerola, T., & Vuoskoski, J. K. (2011). A comparison of the discrete and dimensional models of emotion in music. Psychology of Music, 39(1), 18–49.

    Article  Google Scholar 

  • Fletcher, N. H. (1999). The nonlinear physics of musical instruments. Reports on Progress in Physics, 62(5), 723.

    Article  Google Scholar 

  • Ghosh, M. (2002). Natyashastra (ascribed to Bharata Muni). Varanasi: Chowkhamba Sanskrit Series Office.

    Google Scholar 

  • Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., & Weinberger, D. R. (2002). The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage, 17(1), 317–323.

    Article  Google Scholar 

  • Hunter, P. G., & Schellenberg, E. G. (2010). Music and emotion. In Music perception (pp. 129–164). New York: Springer.

    Google Scholar 

  • Jafari, G. R., Pedram, P., & Hedayatifar, L. (2007). Long-range correlation and multifractality in Bach’s inventions pitches. Journal of Statistical Mechanics: Theory and Experiment, 2007(04), P04012.

    Article  Google Scholar 

  • Jairazbhoy, N. A. (1995). The rāgs of North Indian music: their structure and evolution. Popular Prakashan.

    Google Scholar 

  • Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1), 87–114.

    Article  MATH  Google Scholar 

  • Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, B. G., Richardson, P., Scott, J., … & Turnbull, D. (2010, August). Music emotion recognition: A state of the art review. In Proc. ISMIR (pp. 255–266).

    Google Scholar 

  • Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170–180.

    Article  Google Scholar 

  • Koelsch, S., Fritz, T., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: an fMRI study. Human Brain Mapping, 27(3), 239–250.

    Article  Google Scholar 

  • Martinez, J. L. (2001). Semiosis in Hindustani music (Vol. 15). India: Motilal Banarsidass Publ.

    Google Scholar 

  • Mathur, A., Vijayakumar, S. H., Chakrabarti, B., & Singh, N. C. (2015). Emotional responses to Hindustani raga music: the role of musical structure. Frontiers in psychology6.

    Google Scholar 

  • Morse, P. M. (1948). Vibration and Sound, 2nd. McGraw-Hill, New York, 487(1975), 113.

    Google Scholar 

  • Posner, J., Russell, J. A., & Peterson, B. S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(03), 715–734.

    Article  Google Scholar 

  • Rahaim, M. (2012). Musicking Bodies: Gesture and Voice in Hindustani Music. USA: Wesleyan University Press.

    Google Scholar 

  • Raja, D. (2005). Hindustani music. DK Printworld (P) Ltd: A Tradition in Transition.

    Google Scholar 

  • Ross, J. C., & Rao, P. (2012). Detection of raga-characteristic phrases from Hindustani classical music audio. In X. Serra, P. Rao, H. Murthy, & B. Bozkurt (Eds.), Proceedings of the 2nd CompMusic Workshop; 2012 Jul 12–13; Istanbul, Turkey. Barcelona: Universitat Pompeu Fabra; 2012. pp. 133–138. Universitat Pompeu Fabra.

    Google Scholar 

  • Russell, J. A. (1991). Culture and the categorization of emotions. Psychological Bulletin, 110(3), 426.

    Article  Google Scholar 

  • Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 44(2), 293–304.

    Article  Google Scholar 

  • Sanyal, R., Widdess, R., & Sanyal, R. (2004). Dhrupad: tradition and performance in Indian music (p. xxii395). Aldershot: Ashgate.

    Google Scholar 

  • Sanyal, S., Banerjee, A., Patranabis, A., Banerjee, K., Sengupta, R., & Ghosh, D. (2016). A study on Improvisation in a Musical performance using Multifractal Detrended Cross Correlation Analysis. Physica A: Statistical Mechanics and its Applications, 462, 67–83.

    Article  Google Scholar 

  • Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15(4), 487–500.

    Article  Google Scholar 

  • Sengupta, R., Dey, N., Datta, A. K., & Ghosh, D. (2005). Assessment of musical quality of tanpura by fractal-dimensional analysis. Fractals, 13(03), 245–252.

    Article  MATH  Google Scholar 

  • Sengupta, R., Dey, N. and Datta, A. K. (2010a). Study of Source Characteristics in Sarod from the Sound Signals, Ninaad (J. ITC Sangeet Research Academy), 24, 44–51, ISSN 0973-3787.

    Google Scholar 

  • Sengupta, R., Dey, N., Datta, A K, Ghosh D and Patranabis A. (2010b). Analysis of the Signal Complexity in Sitar Performances, Fractals, Vol. 18(2), 265–270.

    Google Scholar 

  • Sengupta, R., Guhathakurta, T., Ghosh, D., & Datta, A. K. (2012). Emotion induced by Hindustani music–a cross cultural study based on listener’s response, Proc. International Symposium FRSM-2012, January 18–19. Gurgaon, India: KIIT College of Engineering.

    Google Scholar 

  • Siddiq, S. (2012). A physical model of the nonlinear sitar string. Archives of acoustics, 37(1), 73–79.

    Article  Google Scholar 

  • Slawek, S. (1998). Improvisation in Hindustani Instrumental Music (p. 335). In the course of performance: Studies in the world of musical improvisation.

    Google Scholar 

  • Telesca, L., & Lovallo, M. (2011, October). Revealing competitive behaviours in music by means of the multifractal detrended fluctuation analysis: application to Bach’s Sinfonias. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 467, No. 2134, pp. 3022–3032). The Royal Society.

    Google Scholar 

  • Vuilleumier, P., Armony, J. L., Clarke, K., Husain, M., Driver, J., & Dolan, R. J. (2002). Neural response to emotional faces with and without awareness: event-related fMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia, 40(12), 2156–2166.

    Article  Google Scholar 

  • Wieczorkowska, A. A., Datta, A. K., Sengupta, R., Dey, N., & Mukherjee, B. (2010). On search for emotion in Hindusthani vocal music. In Advances in music information retrieval (pp. 285–304). Springer: Berlin Heidelberg.

    Google Scholar 

  • Wieczorkowska, A., Synak, P., & Raś, Z. W. (2006). Multi-label classification of emotions in music. In Intelligent Information Processing and Web Mining (pp. 307–315). Springer Berlin: Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, D., Sengupta, R., Sanyal, S., Banerjee, A. (2018). Emotion and Ambiguity: A Study. In: Musicality of Human Brain through Fractal Analytics. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6511-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6511-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6510-1

  • Online ISBN: 978-981-10-6511-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics