Skip to main content

Zero and Emptiness (Vacuum/Void) in Physics and Chemistry

  • Chapter
  • First Online:
The Kyoto Manifesto for Global Economics

Part of the book series: Creative Economy ((CRE))

  • 544 Accesses

Abstract

In this chapter, I will explain what the absolute zero and the absolute emptiness (vacuum/void ) are in the fields of quantum physics and chemistry. At first one likely believes that there is nothing—no particles at all—in the vacuum state. Is it correct? The importance of this question even extends to other fields, including philosophy and religion. To answer this question, we must examine the history of modern physical sciences since the early 20th century. Here, I will discuss quantum physics and chemistry, especially solid-state quantum physics and chemistry .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review, 73, 803–804.

    Article  Google Scholar 

  • Anderson, P. W. (1959). New approach to the theory of superexchange interactions. Physical Review, 115, 2–13; Localized magnetic states in metals. ibid., 124, 41–53 (1961).

    Google Scholar 

  • Anderson, P. W. (2013). Twenty-five years of high-temperature superconductivity—A personal review. Journal of Physics Conference Series, 449, 012001/1–10; Resonating valence bonds: A new kind of insulator?. Material Research Bulletin, 8, 153–160 (1973).

    Google Scholar 

  • Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics (Harcourt, Orlando).

    Google Scholar 

  • Bardeen, J., Cooper, L., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108, 1175–1204.

    Article  Google Scholar 

  • Bednorz, J. G., & Müller, K. A. (1986). Possible highTc superconductivity in the Ba–La–Cu–O system. Zeitschrift für Physik B Condensed Matter, 64, 189–193.

    Article  Google Scholar 

  • Bogoliubov, N. N. (1947). On the theory of superfluidity. Journal of Physics (USSR), 11, 23–32.

    Google Scholar 

  • Bogoliubov, N. N. (1958). Nuovo Cimento 7, 794; A new method in the theory of superconductivity. I, II, III. Soviet Physics JETP, 34, 41–55 (1958).

    Google Scholar 

  • Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine, 26, 1–24; ibid., 26, 476–502 (1913); ibid., 26, 857–875 (1913); Atomic Structure. Nature, 107, 104–107 (1921); ibid., 108, 208–209 (1921).

    Google Scholar 

  • Bose, S. N. (1924). Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik, 26, 178–181.

    Article  Google Scholar 

  • Brandt, W., & Dupasquier, A. (1983). Positron solid-state physics (North-Holland, Amsterdam).

    Google Scholar 

  • de Broglie, L. (1923). Waves and quanta. Nature, 112, 540; Annales de Physique (Paris), 3, 22 (1925).

    Google Scholar 

  • Dirac, P. A. M. (1926a). On the theory of quantum mechanics. In Proceedings of the Royal Society of London A, 111, 405–23; The quantum theory of the electron. ibid., 117, 610–624 (1928); Quantized singularities in the electromagnetic field. ibid., 133, 60–67 (1931); Relativistic quantum mechanics. ibid., 136, 453–464 (1932); Mathematical Proceedings of the Cambridge Philosophical Society, 30, 150–63 (1934); ibid., 35, 416–418 (1939).

    Google Scholar 

  • Dirac, P. A. M. (1926b). On the theory of quantum mechanics. In Proceedings of the Royal Society, Series A, 112(762), 661–77.

    Google Scholar 

  • Dirac, P. A. M. (1930). The principle of quantum mechanics. Oxford University Press.

    Google Scholar 

  • Einstein, A. (1905a). Ist die Tragheit eines Korpers von seinem Energieinhalt abhangig? Annalen der Physik, 323(18), 639–641. (Weinheim: Wiley-VCH Verlag).

    Google Scholar 

  • Einstein, A. (1905b). Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik, 17, 132–148.

    Article  Google Scholar 

  • Einstein, A. (1905c). Zur elektrodynamik bewegter körper. Annalen der Physik, 17, 891–921.

    Article  Google Scholar 

  • Einstein, A. (1925). Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3.

    Google Scholar 

  • Fermi, E. (1926). Sulla quantizzazione del gas perfetto monoatomico. Rendiconti Lincei (in Italian) 3, 145–149; On the quantization of the monoatomic ideal gas (trans: Zannoni, A.) (1999).

    Google Scholar 

  • Gor’kov, L. P. (1959). Microscopic derivation of the ginzburg-landau equations in the theory of superconductivity. Soviet Physics JETP, 9, 1364–1367.

    Google Scholar 

  • Guth, A. H. (1981). The inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23, 347.

    Google Scholar 

  • Hawking, S. (1988). A brief history of time. Bantam Dell Publishing Group.

    Google Scholar 

  • Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer beziehungen. Zeitschrift für Physik, 33, 879–893.

    Article  Google Scholar 

  • Holstein, T., & Primakoff, H. (1940). Field dependence of the intrinsic domain magnetization of a ferromagnet. Physical Review, 58, 1098–1113.

    Article  Google Scholar 

  • Holtzberg, F., McGuire, T. R., Methfessel, S., & Suits, J. C. (1964). Ferromagnetism in rare-earth group VA and VIA compounds with Th3P4 structure. Journal of Applied Physics, 35, 1033–1038.

    Article  Google Scholar 

  • Hubbard, J. H. (1963). Electron correlations in narrow energy bands. In Proceedings of Royal Society A276, 238–257; ibid., A277, 237–259 (1964); ibid., A281, 401–419 (1964).

    Google Scholar 

  • Hubbell, J. H. (2006). Electron positron pair production by photons: A historical overview. Radiation Physics and Chemistry, 75, 614–623. and references therein.

    Article  Google Scholar 

  • Imai, M., Michioka, C., Ohta, H., Matsuo, A., Kindo, K., Ueda, H., et al. (2014). Anomalous itinerant-electron metamagnetic transition in the layered Sr1−xCaxCo2P2 system. Physical Review B, 90, 014407/1–6.

    Google Scholar 

  • Imai, T., Slichter, C. P., Yoshimura, K., & Kosuge, K. (1993). Low frequency spin dynamics in undoped and Sr-doped La2CuO4. Physical Review Letters, 70, 1002–1005; Imai, T., Slichter, C. P., Yoshimura, K., Kato, M., & Kosuge, K. (1993). Spin-Spin correlation in the quantum critical regime of La2CuO4. Physical Review Letters, 71, 1254–1257.

    Google Scholar 

  • Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., et al. (2006). Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128, 10012–10013.

    Article  Google Scholar 

  • Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. Journal of the American Chemical Society, 130, 3296–3297.

    Article  Google Scholar 

  • Kittel, C. (1953). Introduction to solid state physics. Wiley.

    Google Scholar 

  • Landau, L. D. (1941). The theory of superfluity of helium. Journal of Physics (USSR), 5, 71–90, Physical Review, 60, 356–358 (1941).

    Google Scholar 

  • Landau, L. D., & Lifshits, E. M. (1934). Production of electrons and positrons by a collision of two particles. Physikalische Zeitschrift der Sowjetunion, 6, 244–257.

    Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1980). Statistical physics, part 2. Pergamon: Oxford.

    Google Scholar 

  • Lebed, A. G. (Ed.). (2008). The physics of organic superconductors and conductors. Springer Series in Materials Science (Vol. 110). Berlin: Springer.

    Google Scholar 

  • London, F. (1938). The λ-Phenomenon of liquid Helium and the Bose-Einstein degeneracy. Nature, 141(3571), 643–644.

    Article  Google Scholar 

  • Martin, C. T., Perillo-Marcone, A., Calviani, M., & Muñoz-Cobo, J.-L. (2016). CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact. Physical Review Acceleration and Beams, 19, 073402/1-12.

    Google Scholar 

  • Moriya, T. (1979). Recent progress in the theory of itinerant electron magnetism. Journal of Magnetism and Magnetic Materials, 14, 1–46.

    Article  Google Scholar 

  • Moriya, T. (1981). Electron correlation and magnetism in narrow-band systems. Springer.

    Google Scholar 

  • Moriya, T. (1985). Spin Fluctuations in Itinerant Electron Magnetism. Springer Series in Solid-State Sciences 56. Berlin: Springer.

    Google Scholar 

  • Moriya, T. (1987). A unified picture of magnetism. In H. Capellmann (Ed.), Metallic magnetism. Berlin: Springer.

    Google Scholar 

  • Moriya, T. (2006). Antiferromagnetic spin fluctuation and superconductivity. In Proceedings of the Japan Academy Series B, 82, 1–16; Moriya, T., & Ueda, K. (2003). Antiferromagnetic spin fluctuation and superconductivity. Report on Progress in Physics, 66, 1299–1341; Moriya, T., Takahashi, Y., & Ueda, K. (1992). Antiferromagnetic spin fluctuations and superconductivity in high-Tc oxides. Journal of Magnetism and Magnetic Materials, 104–107, 456–460; Moriya, T., Takahashi, Y., & Ueda, K. (1990). Antiferromagnetic spin fluctuations and superconductivity—A possible model for high Tc oxides. Journal of the Physical Society of Japan, 59, 2905–2915.

    Google Scholar 

  • Moriya, T., & Kawabata, A. (1973). Effect of Spin Fluctuations on Itinerant Electron Ferromagnetism I & II. Journal of the Physical Society of Japan, 34, 639–651; ibid, 35, 669–676 (1973).

    Google Scholar 

  • Moriya, T., & Takahashi, Y. (1978). Spin fluctuation theory of itinerant electron ferromagnetism—A unified picture. Journal of the Physical Society of Japan, 45, 397–408.

    Article  Google Scholar 

  • Mott, N. F. (1949). The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals. Proceedings of the Physical Society (London) A62, 416–422; Metal-Insulator Transition. Reviews of Modern Physics, 40, 677–683 (1968).

    Google Scholar 

  • Murata, K. K., & Doniach, S. (1972). Theory of magnetic fluctuations in itinerant ferromagnets. Physical Review Letters, 29, 285–288.

    Article  Google Scholar 

  • Nagaosa, N., & Lee, P. A. (1990). Normal-state properties of the uniform resonating-valence-bond state. Physical Review Letters, 64, 2450–2453; Lee, P. A., & Nagaosa, N. (1992). Gauge theory of the normal state of high-Tc superconductors. Physical Review B, 46, 5621–5639.

    Google Scholar 

  • Nawa, K., MichiokaI, C., Yoshimura, K., Matsuo, A., & Kindo, K. (2011). Magnetic phase diagram of alternating chain compound Pb2V3O9. Journal of the Physical Society of Japan, 80, 034710/1-7.

    Google Scholar 

  • Nikuni, T., Oshikawa, M., Oosawa, A., & Tanaka, H. (2000). Bose-Einstein condensation of dilute magnons in TlCuCl3. Physical Review Letters, 84, 5869–5871.

    Article  Google Scholar 

  • Ohta, H., & Yoshimura, K. (2009). Anomalous magnetization in the layered itinerant ferromagnet LaCoAsO. Physical Review B, 79, 184407/1–5.

    Google Scholar 

  • Onnes, H. K. (1911). The superconductivity of mercury. Communication from the Physical Laboratory at the University of Leiden, 122, 124.

    Google Scholar 

  • Osheroff, D. D., Richardson, R. C., & Lee, D. M. (1972). Evidence for a new phase of solid He3. Physical Review Letters, 28, 885–888.

    Article  Google Scholar 

  • Pauli, W. (1925). Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik, 31, 765–783.

    Article  Google Scholar 

  • Pauli, W. (1927). Uber Gasentartung und Paramagnetismus. Zeitschrift für Physik, 41, 81–102.

    Article  Google Scholar 

  • Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal Letters, 142, 419–421; A measurement of the flux density of CAS A at 4080 Mc/s. ibid., 142, 1149–1154 (1965).

    Google Scholar 

  • Pines, D. (2013). Finding new superconductors: The spin-fluctuation gateway to high Tc and possible room temperature superconductivity. Journal of Physical Chemistry B, 117, 13145–13153.

    Article  Google Scholar 

  • Planck, M. (1900). Zur theorie des gesetzes der energieverteilung im normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2(17), 237–245.

    Google Scholar 

  • Sakurai, J. J. (1994). Modern quantum mechanics (revised edition, Addison-Wesley P. C. Inc.).

    Google Scholar 

  • Sato, K. (1981). First-order phase transition of a vacuum and the expansion of the Universe. Monthly Notices of Royal Astronomical Society, 195, 467.

    Google Scholar 

  • Schrödinger, E. (1926). Quantisierung als eigenwertproblem. Annalen der Physik, 79, 361–376; An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28, 1049–1070 (1926).

    Google Scholar 

  • Schultz, P. J., & Lynn, K. G. (1988). Interaction of positron beams with surfaces, thin films, and interfaces. Review of Modern Physics, 60, 701–779.

    Article  Google Scholar 

  • Steglich, F., Aarts, J., Bredl, C. D., Lieke, W., Meschede, D., Franz, W., et al. (1979). Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Physical Review Letters, 43, 1892–1896.

    Article  Google Scholar 

  • Stoner, E. C. (1938). Collective electron ferromagnetism. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 165, 372–414 and Collective Electron Ferromagnetism II. Energy and Specific Heat. ibid., 169, 339–371 (1939).

    Google Scholar 

  • Takahashi, Y. (1986). On the origin of the curie-weiss law of the magnetic susceptibility in itinerant electron ferromagnetism. Journal of the Physical Society of Japan, 55, 3553–3573.

    Article  Google Scholar 

  • Takahashi, Y. (2013). Spin fluctuation theory of itinerant electron magnetism. Springer Tracts in Modern Physics, 253. Berlin: Springer.

    Google Scholar 

  • Takahashi, Y., & Moriya, T. (1985). Quantitative aspects of the theory of weak itinerant ferromagnetism. Journal of the Physical Society of Japan, 54, 1592–1598.

    Article  Google Scholar 

  • Takahashi, Y., & Yoshimura, K. (2012). Itinerant electron magnets and spin fluctuations (1st ed., Uchida Rokakuho, ISBN4-621-07307-9).

    Google Scholar 

  • Weinberg, S. (1977). The first three minutes: a modern view of the origin of the universe (Basic Books, New York, updated with new afterword in 1993, ISBN 0-465-02437-8).

    Google Scholar 

  • Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., et al. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 58, 908–910.

    Article  Google Scholar 

  • Yang, J., Chen, B., Wang, H., Mao, Q., Imai, M., & Yoshimura, K. (2013). Magnetic properties in layered ACo2Se2 (A = K, Rb, Cs) with the ThCr2Si2-type structure. Physical Review B, 88, 064406/1–9.

    Google Scholar 

  • Yoshimura, K., Imai, T., Kiyama, T., Thurber, K. R., Hunt, A. W., & Kosuge, K. (1999). 17O NMR observation of universal behavior of ferromagnetic spin fluctuation in the itinerant magnetic system Sr1−XCaXRuO3. Physical Review Letters, 83, 4397–4400.

    Article  Google Scholar 

  • Yoshimura, K., Mekata, M., Takigawa, M., Takahashi, Y., & Yasuoka, H. (1988). Spin fluctuations in Y(Co1−XAlX)2: A transition system from nearly to weakly itinerant ferromagnetism. Physical Review B, 37, 3593–3602.

    Article  Google Scholar 

  • Yoshimura, K., Takigawa, M., Takahashi, Y., Yasuoka, H., & Nakamura, Y. (1987). NMR study of weakly itinerant ferromagnetic Y(Co1−x Al x )2. Journal of the Physical Society of Japan, 56, 1138–1155.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Stom Yamash’ta for encouraging him to write this chapter with valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Editor(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimura, K. (2018). Zero and Emptiness (Vacuum/Void) in Physics and Chemistry. In: Yamash’ta, S., Yagi, T., Hill, S. (eds) The Kyoto Manifesto for Global Economics. Creative Economy. Springer, Singapore. https://doi.org/10.1007/978-981-10-6478-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6478-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6477-7

  • Online ISBN: 978-981-10-6478-4

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics