Skip to main content

Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures

  • Conference paper
  • First Online:
Mathematical Analysis of Continuum Mechanics and Industrial Applications II (CoMFoS 2016)

Part of the book series: Mathematics for Industry ((MFI,volume 30))

Included in the following conference series:

Abstract

We present a new second-order energy dissipative numerical scheme to treat macroscopic equations aiming at the modeling of the dynamics of complex polymer–solvent mixtures. These partial differential equations are the Cahn-Hilliard equation for diffuse interface phase fields and the Oldroyd-B equations for the hydrodynamics of the polymeric mixture. A second-order combined finite volume/finite difference method is applied for the spatial discretization. A complementary approach to study the same physical system is realized by simulations of a microscopic model based on a hybrid Lattice Boltzmann/Molecular Dynamics scheme. These latter simulations provide initial conditions for the numerical solution of the macroscopic equations. This procedure is intended as a first step toward the development of a multiscale method that aims at combining the two models.

The present paper has been supported by the German Science Foundation (DFG) under the grant TRR 146.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013). https://doi.org/10.1007/s00021-012-0118-x

  2. Barrett, J.W., Boyaval, S.: Existence and approximation of a (regularized) Oldroyd-B model. Math. Models Methods Appl. Sci. 21(09), 1783–1837 (2011). https://doi.org/10.1142/S0218202511005581

  3. Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 51(2), 481–587 (2002). https://doi.org/10.1080/00018730110117433

  4. Cheng, Y., Kurganov, A., Qu, Z., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015). https://doi.org/10.1016/j.jcp.2015.09.005

  5. Dünweg, B., Ladd, A.J.C.: Lattice Boltzmann simulations of Soft Matter systems. In: Holm, C., Kremer, K. (eds.) Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advances in Polymer Science, no. 221, pp. 89–166. Springer, Berlin (2009)

    Google Scholar 

  6. Fattal, R., Kupferman, R.: Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newton. Fluid Mech. 126(1), 23–37 (2005). https://doi.org/10.1016/j.jnnfm.2004.12.003

  7. Fernández-Cara, E., Guillén-González, F.M., Ortega, R.R.: Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. In: Handbook of Numerical Analysis, vol. VIII, pp. 543–660. Elsevier (2002)

    Google Scholar 

  8. Grest, G.S., Kremer, K.: Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33(5), 3628–3631 (1986). https://doi.org/10.1103/PhysRevA.33.3628

  9. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn-Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). https://doi.org/10.1016/j.jcp.2012.09.020

  10. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977). https://doi.org/10.1103/RevModPhys.49.435

  11. Hu, D., Lelièvre, T.: New entropy estimates for the Oldroyd-B model and related models. Commun. Math. Sci. 5(4), 909–916 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2d. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007). https://doi.org/10.1137/050648110

  13. Lee, D., Huh, J.Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation. Comput. Mater. Sci. 81, 216–225 (2014). https://doi.org/10.1016/j.commatsci.2013.08.027

  14. Lukáčová-Medvid’ová, M., Notsu, H., She, B.: Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid. Int. J. Numer. Methods Fluids 81(9), 523–557 (2016). https://doi.org/10.1002/fld.4195

  15. Onuki, A.: Phase Transition Dynamics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  16. Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, Oxford (2003)

    Google Scholar 

  17. Soddemann, T., Dünweg, B., Kremer, K.: A generic computer model for amphiphilic systems. Eur. Phys. J. E 6(1), 409–419 (2001). https://doi.org/10.1007/s10189-001-8054-4

  18. Tanaka, H.: Viscoelastic phase separation. J. Phys. Condens. Matter 12(15), R207 (2000). https://doi.org/10.1088/0953-8984/12/15/201

  19. Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22(2), 269–289 (2015). https://doi.org/10.1007/s11831-014-9112-1

  20. Turek, S., Ouazzi, A., Hron, J.: On pressure separation algorithms (PSepA) for improving the accuracy of incompressible flow simulations. Int. J. Numer. Methods Fluids 59(4), 387–403 (2009). https://doi.org/10.1002/fld.1820

  21. Zhou, D., Zhang, P., Weinan, E.: Modified models of polymer phase separation. Phys. Rev. E 73(6), 061801 (2006). https://doi.org/10.1103/PhysRevE.73.061801

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Lukáčová-Medvid’ová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukáčová-Medvid’ová, M., Dünweg, B., Strasser, P., Tretyakov, N. (2018). Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures. In: van Meurs, P., Kimura, M., Notsu, H. (eds) Mathematical Analysis of Continuum Mechanics and Industrial Applications II. CoMFoS 2016. Mathematics for Industry, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-10-6283-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6283-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6282-7

  • Online ISBN: 978-981-10-6283-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics