Skip to main content

Bacterial Volatile Organic Compounds: A New Insight for Sustainable Agriculture

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Plant growth-promoting rhizobacteria (PGPR) improve plant growth by improved nutrient acquisition and guarding plants from biotic and abiotic stress. PGPR stimulate plant defense system by induction of systemic resistance or tolerance (ISR/IST). A large number of elicitors are known to stimulate plant defense system, and VOCs are one of the most studied elicitors for ISR/IST response which excites plant defense system without direct physical contact. In this chapter review about the current development regarding interactions of PGPR volatiles and plants is discussed. The mechanisms of action of volatile compounds for plant growth promotion as well as stimulation of plant defense to withstand abiotic and biotic stress are also being elaborated to explain elicitation of plant’s self-immunity against various stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128

    Article  CAS  Google Scholar 

  • Barriuso J, Solano BR, Gutierrez-Manero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Alcaraz-Menéndez L, Toledo G (1992) Responses of soybean and cowpea root membranes to inoculation with Azospirillum brasilense. Symbiosis 13:217–228

    Google Scholar 

  • Baysal O, Lai D, H-H X, Siragusa M, Carimi F, Silva JA, Tor M (2013) A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One 5(1):1–12

    Google Scholar 

  • Burmølle M, Hansen LH, Sørensen SJ (2007) Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microb Ecol 54:352–362

    Article  PubMed  Google Scholar 

  • Chen Y, Gozzi K, Yan F, Chai Y (2015) Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. Microbiology 6:e00392

    CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Song GC, Yi H-S, Ryu C-M (2014) Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J Chem Ecol 40:882–892

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Barco AM, Hsiang T, Goodwin PH (2010a) Induced systemic resistance against three foliar diseases ofAgrostis stolonifera by (2R, 3R)-butanediol or an isoparrafin mixture. Ann Appl Biol 157:179–189

    Google Scholar 

  • Cortes-Barco AM, Goodwin PH, Hsiang T (2010b) Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59:643–653

    Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341– 352

    Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Google Scholar 

  • Dimkpa C, Wein T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kaldéras J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Giorgio A, De Stradis A, Lo Cantore P, Iacobellis SN (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1–13

    Article  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Google Scholar 

  • Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575

    Article  CAS  Google Scholar 

  • Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.) Afr J Biotechnol 14:764–773

    Article  CAS  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006) Gac S-dependent production of 2R, 3R-Butanediol by P. chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against P. syringae pv. tabaci in tobacco. MPMI 19(8):924–930

    Article  CAS  PubMed  Google Scholar 

  • http://bioinformatics.charite.de/mvoc

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterization of volatiles produced from Bacillus megaterium YFM 3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422

    Article  CAS  Google Scholar 

  • Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance-elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68(9):1306

    Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles – an effect of CO2? FEBS Lett 583:3473–3477

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promotion rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wu W, Zhu B, Du Y, Liu F (2008) Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agril Sci China 7(9):1104–1114

    Article  CAS  Google Scholar 

  • Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyldisulfide produced by the naturally associated bacterium Bacillus spB55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Asensio D, Tholl D (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891

    Article  CAS  PubMed  Google Scholar 

  • Pereyra MA, Zalazar CA, Barassi CA (2006) Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress. Plant Physiol Biochem 44:873–879

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811

    Google Scholar 

  • Romoli R, Papaleo MC, dePascale D, Tutino ML, Michaud L, LoGiudice A (2011) Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry. J Mass Spectrom 46:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Pare PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Community Biol 3(2):130–138

    Google Scholar 

  • Ryu CM, Farag MA, CH H (2003) Bacterial volatiles promote growth in Arabidopsis. Natl Acad Sci 100:4927–4932

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, CH H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat J Prod Reprod 24:814–842

    Article  CAS  Google Scholar 

  • Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Google Scholar 

  • Sueldo RJ, Invernati A, Plaza SG, Barassi CA (1996) Osmotic stress in wheat seedlings: effects on fatty acid composition and phospholipid turnover in coleoptiles. Cereal Res Commun 24:77–84

    CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms : molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551

    Article  CAS  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by P. fluorescens cells helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8(2):351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan M, Li G, Zhang J, Jiang D, Huang H (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Article  Google Scholar 

  • Wenke K, Weise T, Warnke R (2012) Bacterial volatiles mediating information between bacteria and plants. In: Witzany G, Baluska F (eds) Biocommunication of plants. Springer, Berlin/Heidelberg, pp 327–347

    Chapter  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Any Van Leeuw 81:357–364

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim S, Kornyeyev DA, Holaday S, Pare PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in plant. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacteria regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Murzello C, Kim MS, Xie X, Jeter RM, Zak JC (2010) Choline and osmotic stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Panpatte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panpatte, D.G., Shukla, Y.M., Shelat, H.N., Vyas, R.V., Jhala, Y.K. (2017). Bacterial Volatile Organic Compounds: A New Insight for Sustainable Agriculture. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_8

Download citation

Publish with us

Policies and ethics