Skip to main content

Basic Techniques in Fluorescence and Electron Microscopy

  • Chapter
  • First Online:
Cyanidioschyzon merolae
  • 690 Accesses

Abstract

The primitive red alga Cyanidioschyzon merolae is a single cell with a very small size (1.5–2 μm) and has no thick cell wall; therefore, preparation of samples for fluorescence and electron microscopy requires different procedures compared to those for green algae or higher plants. Here, fluorescence microscopy methods, such as cell staining with fluorescent dye and the setup of the immunofluorescence microscope, are described. For electron microscopy, methods for transmission electron microscopy, immunoelectron microscopy, and negative staining methods are described. In addition, scanning electron microscopy methods for visualizing cells or organelles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Elrod VA, Johnson KS, Coale KH (1991) Determination of subnanomolar levels of iron (II) and total dissolved iron in seawater by flow injection analysis with chemiluminescence detection. Anal Chem 63:893–898

    Article  CAS  Google Scholar 

  • Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T (2010) The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Plant Cell 22:772–781. https://doi.org/10.1105/tpc.109.070227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imoto Y, Fujiwara T, Yoshida Y, Kuroiwa H, Maruyama S, Kuroiwa T (2010) Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74. https://doi.org/10.1007/s00709-010-0107-y

    Article  PubMed  Google Scholar 

  • Imoto Y, Kuroiwa H, Ohnuma M, Kawano S, Kuroiwa T (2012) Identification of peroxisome-dividing ring in Cyanidioschyzon merolae based on organelle partner hypothesis. Cytologia 77(4):515–522. https://doi.org/10.1508/cytologia77.515

    Article  Google Scholar 

  • Imoto Y, Abe Y, Okumoto K, Honsho M, Kuroiwa H, Kuroiwa T, Fujiki Y (2017) Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae. J Cell Sci 130:853–867. https://doi.org/10.1242/jcs.199182

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T, Suzuki T (1980) An improved method for the demonstration of the in situ chloroplast nuclei in higher plants. Cell Struct Funct 5:195–197

    Article  Google Scholar 

  • Kuroiwa T, Suzuki T, Ogawa K, Kawano S (1981) The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol 22:381–396

    Google Scholar 

  • Kuroiwa T, Suzuki T, Itoh R, Toda K, O’Keefe TC, Kuroiwa H (1995) Mitochondria-dividing ring : ultrastructural basis for the mechanism of mitochondrial division in Cyanidioschyzon merolae. Protoplasma 186:12–23. https://doi.org/10.1007/BF01280718

    Article  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657. https://doi.org/10.1038/nature02398

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima S, Itoh R, Toda H, Takahashi H, Kuroiwa H, Kuroiwa T (1998a) Visualization of the microbody division in Cyanidioschyzon merolae with the fluorochrome brilliant sulfoflavin. Protoplasma 201:115–119. https://doi.org/10.1007/BF01280718

    Article  Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998b) Orderly formation of the double ring structures for plastid and mitochondrial division in the unicellular red alga Cyanidioschyzon merolae. Planta 206:551–560. https://doi.org/10.1007/s004250050432

    Article  CAS  Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998c) Identification of a triple ring structure involved in plastid division in the primitive red alga Cyanidioschyzon merolae. J Electron Microsc 47(3):269–272

    Article  Google Scholar 

  • Miyagishima S, Itoh R, Aita S, Kuroiwa H, Kuroiwa T (1999a) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209:371–375. https://doi.org/10.1007/s004250050645

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Kuroiwa H, Kuroiwa T (1999b) Real-time analyses of chloroplast and mitochondrial division and differences in the behavior of their dividing rings during contraction. Planta 207:343–353. https://doi.org/10.1007/s0042500491

    Article  CAS  Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Kuroiwa H, Nishimura M, Kuroiwa T (1999c) Microbody proliferation and segregation cycle in the single-microbody alga Cyanidioschyzon merolae. Planta 208:326–336. https://doi.org/10.1007/s004250050566

    Article  CAS  Google Scholar 

  • Miyagishima S, Kuroiwa H, Kuroiwa T (2001a) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212:517–528. https://doi.org/10.1007/s004250000426

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima S, Takahara M, Kuroiwa T (2001b) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13:707–721. https://doi.org/10.1105/tpc.13.3.707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagishima S, Takahara M, Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2001c) Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13:2258–2268

    Article  Google Scholar 

  • Miyagishima S, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific Dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–665. https://doi.org/10.1105/tpc.009373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishibayashi S, Kuroiwa T (1985) Division of mitochondrial nuclei in protozoa, a green alga and a higher plant. Cytologia 50:75–82

    Article  Google Scholar 

  • Nishida K, Takahara M, Miyagishima S, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci 100:2146–2151. https://doi.org/10.1073/pnas.0436886100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2004) Triple Immunofluorescent labeling of FtsZ, Dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 52:1–7. https://doi.org/10.1369/jhc.3C6315.2004

    Article  Google Scholar 

  • Nishida K, Yagisawa F, Kuroiwa H, Yoshida Y, Kuroiwa T (2007) WD40 protein Mda1 is purified with Dnm1 and forms a dividing ring for mitochondria before Dnm1 in Cyanidioschyzon merolae. Proc Natl Acad Sci 104(11):4736–4741. https://doi.org/10.1073/pnas.0609364104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon. BMC Biol 5:28–37. https://doi.org/10.1186/1741-7007-5-28

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288

    CAS  PubMed  Google Scholar 

  • Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi M, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893. https://doi.org/10.1111/j.1365-313X.2009.04008.x

    Article  CAS  PubMed  Google Scholar 

  • Yagisawa F, Fujiwara T, Kuroiwa H, Nishida K, Imoto Y, Kuroiwa T (2012) Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma 249:1129–1135. https://doi.org/10.1007/s00709-011-0359-1

    Article  CAS  PubMed  Google Scholar 

  • Yagisawa F, Kuroiwa H, Fujiwara T, Kuroiwa T (2016) Intracellular structure of the unicellular red alga, Cyanidioschyzon merolae, in response to phosphate depletion and resupplementation. Cytologia 81(3):341–347. https://doi.org/10.1508/cytologia.81.341

    Article  Google Scholar 

  • Yamada M, Sudo A, Suzuki S (1985) Chemiluminescence method for selective determination of iron (II) and chromium (II) with single reaction system. Che Lett Chem Soc Jpn:801–804

    Google Scholar 

  • Yoshida Y, Kuroiwa H, Misumi O, Nishida K, Yagisawa F, Fujiwara T, Nanamiya H, Kawamura F, Kuroiwa T (2006) Isolated chloroplast division machinery can actively constrict after stretching. Science 313:1435–1438. https://doi.org/10.1126/science.1129689

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Kuroiwa H, Hirooka S, Fujiwara T, Ohnuma M, Yoshida M, Misumi O, Kawano S, Kuroiwa T (2009) The bacterial ZapA-like protein ZED is required for mitochondrial division. Curr Biol 19:1–7. doi: 101016/j.cub.2009.07.035

    Article  Google Scholar 

  • Yoshida Y, Kuroiwa K, Misumi O, Yoshida M, Ohnuma M, Fujiwara T, Yagisawa F, Hirooka S, Imoto Y, Matsushita K, Kawano S, Kuroiwa T (2010) Chloroplasts divide by contraction of a bundle of Nanofilaments consisting of Polyglucan. Science 329:949–953. https://doi.org/10.1126/science.1190791

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2012) The plastid-dividing machinery: formation, constriction and fission. Curr Opin Plant Biol 15:1–8. https://doi.org/10.1242/jcs.116798

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruko Kuroiwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuroiwa, H. (2017). Basic Techniques in Fluorescence and Electron Microscopy. In: Kuroiwa, T., et al. Cyanidioschyzon merolae. Springer, Singapore. https://doi.org/10.1007/978-981-10-6101-1_8

Download citation

Publish with us

Policies and ethics