Skip to main content

Toxicity, Adsorption, and Dissipation of Polycyclic Aromatic Hydrocarbons in Soil

  • Chapter
  • First Online:
Twenty Years of Research and Development on Soil Pollution and Remediation in China

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are typical persistent organic pollutants (POPs) that mostly generated from the incomplete combustion of fossil fuels, waste incineration, forest and prairie fires, and industrial processes (Bamforth and Singleton 2005; Zeng et al. 2010). They are widespread distributed in environments, such as soil, air, water, sediment, etc. (Johnson et al. 2005). Because of their potential bioaccumulation and high toxicity, great attention has been paid to study the behavior of PAHs in soil and to develop effective practices to remediate PAHs-contaminated soil in the past decades. In this chapter, some work about the toxicity (Ma et al. 2010a), adsorption (Li et al. 2013; Zeng et al. 2014; He et al. 2015a; Ma et al. 2011, 2016), and dissipation of PAHs (Ma et al. 2010b, c; He et al. 2015b) in soil conducted in our group these years is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aaen KN, Holm PE, Priemé A et al (2011) Comparison of aerobic and anaerobic [3H] leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils. Environ Toxicol Chem 30(3):588–595

    Article  CAS  Google Scholar 

  • Allan IJ, Booij K, Paschke A et al (2009) Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environ Sci Technol 43(14):5383–5390

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27(13):2630–2636

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Article  CAS  Google Scholar 

  • Begg CBM, Kirk GJD, Mackenzie AF et al (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128(3):469–477

    Article  CAS  Google Scholar 

  • Bojes HK, Pope PG (2007) Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul Toxicol Pharmacol 47(3):288–295

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  CAS  Google Scholar 

  • Delistraty D (1997) Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons. Toxicol Environ Chem 64(1–4):81–108

    Article  CAS  Google Scholar 

  • Evans WC, Fernley HN, Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem J 95(3):819

    Article  CAS  Google Scholar 

  • Fayeulle A, Veignie E, Slomianny C et al (2014) Energy-dependent uptake of benzo [a] pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res 21(5):3515–3523

    Article  CAS  Google Scholar 

  • Gao Y, Zhu L (2005) Phytoremediation for phenanthrene and pyrene contaminated soils. J Environ Sci Amst 17(1):14–18

    CAS  Google Scholar 

  • Gu H, Lou J, Wang H et al (2016) Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and phanerochaete chrysosporium. Front Microbiol 7:38. https://doi.org/10.3389/fmicb.2016.00038

  • Guazzaroni ME, Morgante V, Mirete S et al (2013) Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Environ Microbiol 15(4):1088–1102

    Article  CAS  Google Scholar 

  • Gurevitch J, Morrow LL, Wallace A et al (1992) A meta-analysis of competition in field experiments. Am Nat:539–572

    Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67(2):225–243

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    Article  CAS  Google Scholar 

  • Hayat T, Ding N, Ma B et al (2011) Dissipation of pentachlorophenol in the aerobic-anaerobic interfaces established by the rhizosphere of rice (Oryza sativa L.) root. J Environ Qual 40(6):1722–1729

    Article  CAS  Google Scholar 

  • He Y, Xu J, Tang C et al (2005) Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.) Soil Biol Biochem 37(11):2017–2024

    Article  CAS  Google Scholar 

  • He Y, Xia W, Li X et al (2015a) Dissipation of phenanthrene and pyrene at the aerobic-anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars. Environ Sci Pollut Res 22(5):3908–3919

    Article  CAS  Google Scholar 

  • He Y, Zeng F, Lian Z et al (2015b) Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal. Environ Pollut 205:43–51

    Article  CAS  Google Scholar 

  • Hynes RK, Farrell RE, Germida JJ (2004) Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). Int J Phytoremediation 6(3):253–268

    Article  CAS  Google Scholar 

  • Johnson DL, Anderson DR, McGrath SP (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37(12):2334–2336

    Article  CAS  Google Scholar 

  • Keyte I, Wild E, Dent J et al (2009) Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnum cupressiforme) using two-photon excitation microscopy with autofluorescence. Environ Sci Technol 43(15):5755–5761

    Article  CAS  Google Scholar 

  • King AJ, Readman JW, Zhou JL (2004) Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction- gas chromatography-mass spectrometry. Anal Chim Acta 523(2):259–267

    Article  CAS  Google Scholar 

  • Krauss M, Wilcke W (2005) Persistent organic pollutants in soil density fractions: distribution and sorption strength. Chemosphere 59(10):1507–1515

    Article  CAS  Google Scholar 

  • Li W, Zhu X, He Y et al (2013) Enhancement of water solubility and mobility of phenanthrene by natural soil nanoparticles. Environ Pollut 176:228–233

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Hua F et al (2014) Trans-membrane transport of fluoranthene by Rhodococcus sp. BaP-1 and optimization of uptake process. Bioresour Technol 155:213–219

    Article  CAS  Google Scholar 

  • Lou J, Gu H, Wang H et al (2016) Complete genome sequence of Massilia sp. WG5, an efficient phenanthrene-degrading bacterium from soil. J Biotechnol 218:49–50

    Article  CAS  Google Scholar 

  • Ma B, Chen H, He Y et al (2010a) Evaluation of toxicity risk of polycyclic aromatic hydrocarbons (PAHs) in crops rhizosphere of contaminated field with sequential extraction. J Soils Sediments 10(5):955–963

    Article  CAS  Google Scholar 

  • Ma B, Chen H, Xu M et al (2010b) Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size. Environ Pollut 158(8):2773–2777

    Article  CAS  Google Scholar 

  • Ma B, He Y, Chen H et al (2010c) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environ Pollut 158(3):855–861

    Article  CAS  Google Scholar 

  • Ma B, Xu M, Wang J et al (2011) Adsorption of polycyclic aromatic hydrocarbons (PAHs) on Rhizopus oryzae cell walls: application of cosolvent models for validating the cell wall-water partition coefficient. Bioresour Technol 102(22):10542–10547

    Article  CAS  Google Scholar 

  • Ma B, Wang J, Xu M et al (2012) Evaluation of dissipation gradients of polycyclic aromatic hydrocarbons in rice rhizosphere utilizing a sequential extraction procedure. Environ Pollut 162:413–421

    Article  CAS  Google Scholar 

  • Ma B, Lyu XF, Zha T et al (2015) Reconstructed metagenomes reveal changes of microbial functional profiling during PAHs degradation along a rice (Oryza sativa) rhizosphere gradient. J Appl Microbiol 118(4):890–900

    Article  CAS  Google Scholar 

  • Ma B, Lv X, He Y et al (2016) Assessing adsorption of polycyclic aromatic hydrocarbons on Rhizopus oryzae cell wall components with water-methanol cosolvent model. Ecotoxicol Environ Saf 125:55–60

    Article  CAS  Google Scholar 

  • Mackova M, Dowling D, Macek T (2006) Phytoremediation-rhizoremediation. Thromb Res 125(2):77–79

    Google Scholar 

  • Mueller KE, Shann JR (2007) Effects of tree root-derived substrates and inorganic nutrients on pyrene mineralization in rhizosphere and bulk soil. J Environ Qual 36(1):120–127

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration. Environ Sci Technol 35(6):1103–1110

    Article  CAS  Google Scholar 

  • Oleszczuk P (2009) Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting. Bioresour Technol 100(1):413–420

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137(2):187–197

    Article  CAS  Google Scholar 

  • Pedersen O, Sand-Jensen K, Revsbech NP (1995) Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 76(5):1536–1545

    Article  Google Scholar 

  • Peng RH, Xiong AS, Xue Y et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955

    Article  CAS  Google Scholar 

  • Sipilä TP, Keskinen AK, Ã…kerman ML et al (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment- specific changes of IE 3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2(9):968–981

    Article  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  Google Scholar 

  • Su YH, Zhu YG (2008) Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environ Pollut 155(2):359–365

    Article  CAS  Google Scholar 

  • Tang J, Xiong L, Wang S et al (2008) Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surf Sci 255(2):502–504

    Article  CAS  Google Scholar 

  • Tian Y, Liu HJ, Zheng TL et al (2008) PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Mar Pollut Bull 57(6):707–715

    Article  CAS  Google Scholar 

  • Tsao TM, Chen YM, Wang MK et al (2011) Structural transformation and physicochemical properties of environmental nanoparticles by comparison of various particle-size fractions. Soil Sci Soc Am J 75(2):533–541

    Article  CAS  Google Scholar 

  • van de Vossenberg J, Woebken D, Maalcke WJ et al (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15(5):1275–1289

    Article  Google Scholar 

  • Wang P, Wang H, Wu L et al (2012) Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil. Environ Pollut 161:121–127

    Article  CAS  Google Scholar 

  • Wang H, Lou J, Gu H et al (2016) Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. Environ Sci Pollut Res 23:1–11

    Article  Google Scholar 

  • Weber WJ, Kim SH, Johnson MD (2002) Distributed reactivity model for sorption by soils and sediments. 15. High-concentration co-contaminant effects on phenanthrene sorption and desorption. Environ Sci Technol 36(16):3625–3634

    Article  CAS  Google Scholar 

  • Xu N, Bao M, Sun P et al (2013) Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Bioresour Technol 149:22–30

    Article  CAS  Google Scholar 

  • Zeng J, Lin X, Zhang J et al (2010) Isolation of polycyclic aromatic hydrocarbons (PAHs) -degrading Mycobacterium spp. and the degradation in soil. J Hazard Mater 183(1):718–723

    Article  CAS  Google Scholar 

  • Zeng F, He Y, Lian Z et al (2014) The impact of solution chemistry of electrolyte on the sorption of pentachlorophenol and phenanthrene by natural hematite nanoparticles. Sci Total Environ 466:577–585

    Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P et al (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42(8):2204–2212

    Article  CAS  Google Scholar 

  • Zhao C, Boriani E, Chana A et al (2008) A new hybrid system of QSAR models for predicting bioconcentration factors (BCF). Chemosphere 73(11):1701–1707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Program of National Natural Science Foundation of China (41130532) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Wang, H., He, Y., Ma, B. (2018). Toxicity, Adsorption, and Dissipation of Polycyclic Aromatic Hydrocarbons in Soil. In: Luo, Y., Tu, C. (eds) Twenty Years of Research and Development on Soil Pollution and Remediation in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6029-8_37

Download citation

Publish with us

Policies and ethics