Skip to main content

New Approaches in CAR-T Cell Immunotherapy for Breast Cancer

  • Chapter
  • First Online:
Translational Research in Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1026))

Abstract

Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  2. Chen W et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    Article  PubMed  Google Scholar 

  3. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou J, Zhong Y (2004) Breast cancer immunotherapy. Cell Mol Immunol 1(4):247–255

    CAS  PubMed  Google Scholar 

  6. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  7. Hamanishi J et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104(9):3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahmoud SM et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955

    Article  PubMed  Google Scholar 

  9. Bindea G et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795

    Article  CAS  PubMed  Google Scholar 

  10. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oble DA et al (2009) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun 9:3

    PubMed  PubMed Central  Google Scholar 

  12. DuPage M et al (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482(7385):405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pages F et al (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951

    Article  CAS  PubMed  Google Scholar 

  14. Rusakiewicz S et al (2013) Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res 73(12):3499–3510

    Article  CAS  PubMed  Google Scholar 

  15. Stumpf M et al (2009) Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 101(9):1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dotti G et al (2001) Adenovector-induced expression of human-CD40-ligand (hCD40L) by multiple myeloma cells. A model for immunotherapy. Exp Hematol 29(8):952–961

    Article  CAS  PubMed  Google Scholar 

  17. Cheadle EJ et al (2014) CAR T cells: driving the road from the laboratory to the clinic. Immunol Rev 257(1):91–106

    Article  PubMed  Google Scholar 

  18. Pittet MJ et al (2001) Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin Cancer Res 7(3 Suppl): 796s–803s

    Google Scholar 

  19. Valmori D et al (2000) Naturally occurring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res 60(16):4499–4506

    CAS  PubMed  Google Scholar 

  20. Jakobsen MK et al (1995) Defective major histocompatibility complex class I expression in a sarcomatoid renal cell carcinoma cell line. J Immunother Emphasis Tumor Immunol 17(4):222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lou Y et al (2008) Combining the antigen processing components TAP and Tapasin elicits enhanced tumor-free survival. Clin Cancer Res 14(5):1494–1501

    Article  CAS  PubMed  Google Scholar 

  22. Singh R, Paterson Y (2007) Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res 67(5):1887–1892

    Article  CAS  PubMed  Google Scholar 

  23. Sun M et al (2014) Construction and evaluation of a novel humanized HER2-specific chimeric receptor. Breast Cancer Res 16(3):R61

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eshhar Z et al (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248(1–2):67–76

    Article  CAS  PubMed  Google Scholar 

  26. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  CAS  PubMed  Google Scholar 

  27. Carpenito C et al (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106(9):3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song DG et al (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119(3):696–706

    Article  CAS  PubMed  Google Scholar 

  29. Chmielewski M et al (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L et al (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19(4):751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5(7):521–531

    Article  CAS  PubMed  Google Scholar 

  32. Tamzalit F et al (2014) IL-15.IL-15Ralpha complex shedding following trans-presentation is essential for the survival of IL-15 responding NK and T cells. Proc Natl Acad Sci U S A 111(23):8565–8570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kochenderfer JN et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brentjens RJ et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porter DL et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalos M et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95): 95ra73

    Google Scholar 

  37. Brentjens RJ et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Google Scholar 

  38. Savoldo B et al (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110(7):2620–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramos CA et al (2016) Clinical responses with T lymphocytes targeting malignancy-associated kappa light chains. J Clin Invest 126(7):2588–2596

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlimper C et al (2012) Improved activation toward primary colorectal cancer cells by antigen-specific targeting autologous cytokine-induced killer cells. Clin Dev Immunol 2012:238924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kandalaft LE, Powell DJ, Coukos G (2012) A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med 10:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kloss CC et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71–75

    Article  CAS  PubMed  Google Scholar 

  44. Lamers CH et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4):904–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies DM et al (2012) Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol Med 18:565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao Y et al (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 183(9):5563–5574

    Article  CAS  PubMed  Google Scholar 

  47. Teng MW et al (2004) Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum Gene Ther 15(7):699–708

    Article  CAS  PubMed  Google Scholar 

  48. Stancovski I et al (1993) Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 151(11):6577–6582

    CAS  PubMed  Google Scholar 

  49. Moritz D et al (1994) Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci U S A 91(10):4318–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altenschmidt U et al (1996) Cytolysis of tumor cells expressing the Neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clin Cancer Res 2(6):1001–1008

    CAS  PubMed  Google Scholar 

  51. Lanitis E et al (2012) Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther 20(3):633–643

    Article  CAS  PubMed  Google Scholar 

  52. Westwood JA et al (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci U S A 102(52):19051–19056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mezzanzanica D et al (1998) Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther 5(6):401–407

    CAS  PubMed  Google Scholar 

  54. Moon EK et al (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilkie S et al (2008) Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180(7):4901–4909

    Article  CAS  PubMed  Google Scholar 

  56. O’Shaughnessy JA (2006) Molecular signatures predict outcomes of breast cancer. N Engl J Med 355(6):615–617

    Article  PubMed  Google Scholar 

  57. Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  PubMed  Google Scholar 

  58. Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119

    Article  CAS  PubMed  Google Scholar 

  59. Lipowska-Bhalla G et al (2012) Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962

    Article  CAS  PubMed  Google Scholar 

  60. Gilham DE et al (2012) CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 18(7):377–384

    Article  CAS  PubMed  Google Scholar 

  61. Lamers CH et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22

    Article  PubMed  Google Scholar 

  62. Park JR et al (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833

    Article  CAS  PubMed  Google Scholar 

  63. Han EQ et al (2013) Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol 6:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kakarla S, Gottschalk S (2014) CAR T cells for solid tumors: armed and ready to go? Cancer J 20(2):151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilkie S et al (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070

    Article  CAS  PubMed  Google Scholar 

  66. Lanitis E et al (2013) Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 1(1):43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grada Z et al (2013) TanCAR: a novel Bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Urbanska K et al (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 72(7):1844–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tamada K et al (2012) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res 18(23):6436–6445

    Article  CAS  PubMed  Google Scholar 

  70. Janssen A, Medema RH (2013) Genetic instability: tipping the balance. Oncogene 32(38):4459–4470

    Article  CAS  PubMed  Google Scholar 

  71. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kakarla S et al (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21(8):1611–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roberts EW et al (2013) Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 210(6):1137–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Niederman TM et al (2002) Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci U S A 99(10):7009–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tran E et al (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210(6):1125–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kershaw MH et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brentjens R et al (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18(4):666–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Savoldo B et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121(5):1822–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li XC et al (2001) IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7(1):114–118

    Article  CAS  PubMed  Google Scholar 

  80. Mueller K, Schweier O, Pircher H (2008) Efficacy of IL-2- versus IL-15-stimulated CD8 T cells in adoptive immunotherapy. Eur J Immunol 38(10):2874–2885

    Article  CAS  PubMed  Google Scholar 

  81. Ochoa MC et al (2013) Interleukin-15 in gene therapy of cancer. Curr Gene Ther 13(1):15–30

    Article  CAS  PubMed  Google Scholar 

  82. Perna SK et al (2013) Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 19(1):106–117

    Article  CAS  PubMed  Google Scholar 

  83. Quintarelli C et al (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110(8):2793–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoyos V et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hsu C et al (2005) Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 175(11):7226–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carrette F, Surh CD (2012) IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24(3):209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pegram HJ et al (2012) Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119(18):4133–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flies DB et al (2014) Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest 124(5):1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang X et al (2012) Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J Immunother 35(9):689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rooney CM et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5):1549–1555

    CAS  PubMed  Google Scholar 

  92. Heslop HE et al (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hislop AD et al (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617

    Article  CAS  PubMed  Google Scholar 

  94. Gschweng E, De Oliveira S, Kohn DB (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257(1):237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheadle EJ et al (2012) Ligation of the CD2 co-stimulatory receptor enhances IL-2 production from first-generation chimeric antigen receptor T cells. Gene Ther 19(11):1114–1120

    Article  CAS  PubMed  Google Scholar 

  96. Bromley SK, Mempel TR, Luster AD (2008) Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9(9):970–980

    Article  CAS  PubMed  Google Scholar 

  97. Kershaw MH et al (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13(16):1971–1980

    Article  CAS  PubMed  Google Scholar 

  98. Di Stasi A et al (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25):6392–6402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Craddock JA et al (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33(8):780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gajewski TF et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Article  CAS  PubMed  Google Scholar 

  101. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shiao SL et al (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25(24):2559–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tanchot C et al (2013) Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron 6(2):147–157

    Article  CAS  PubMed  Google Scholar 

  104. Foster AE et al (2008) Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 31(5):500–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dotti G et al (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105(12):4677–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Eaton D et al (2002) Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther 9(8):527–535

    Article  CAS  PubMed  Google Scholar 

  107. Sun J et al (2010) T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol Ther 18(11):2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao Y et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Barrett DM et al (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Almasbak H et al (2011) Transiently redirected T cells for adoptive transfer. Cytotherapy 13(5):629–640

    Article  CAS  PubMed  Google Scholar 

  111. Straathof KC et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Di Stasi A et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  113. Arber C et al (2013) The immunogenicity of virus-derived 2A sequences in immunocompetent individuals. Gene Ther 20(9):958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu X et al (2017) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 27(1):154–157

    Article  PubMed  CAS  Google Scholar 

  115. Torikai H et al (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119(24):5697–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Riolobos L et al (2013) HLA engineering of human pluripotent stem cells. Mol Ther 21(6):1232–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chou J et al (2012) Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 35(2):131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu C et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penghui Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Zhou, P. (2017). New Approaches in CAR-T Cell Immunotherapy for Breast Cancer. In: Song, E., Hu, H. (eds) Translational Research in Breast Cancer. Advances in Experimental Medicine and Biology, vol 1026. Springer, Singapore. https://doi.org/10.1007/978-981-10-6020-5_17

Download citation

Publish with us

Policies and ethics