Skip to main content

Leaf Curl Disease of Carica papaya

  • Chapter
  • First Online:

Abstract

Papaya leaf curl disease is caused by Papaya leaf curl virus (PaLCuV), a begomovirus naturally transmitted through whitefly (Bemisia tabaci). Main symptoms of papaya leaf curl disease are inward/outward curling of plant leaves, vein thickening, and stunted plant growth with small distorted fruits or no fruits. Papaya leaf curl virus is a major threat for the crop production, and the virus has the capability to adapt new plant hosts very rapidly which helps in their host range extension that also has emerged as an evolving risk in papaya production. Whitefly management is the main method to control the spread of this virus so far. Several diagnostic techniques especially molecular techniques have been developed to detect the begomoviruses at early stages of infection to control the further spread of the begomovirus, but so far not much reports are available to control the begomoviral infection at later stage. This chapter provides the information about many aspects like causal pathogen, vector responsible for disease spread/transmission, host range and phylogenetic analysis of virus associated with the papaya leaf curl disease, and different resistance approaches for possible management of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz M (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238. doi:10.1186/s13059-015-0799-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544

    Article  PubMed  Google Scholar 

  • Antignus Y, Nestel D, Cohen S, Lapidot M (2001) Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight-behavior. Environ Entomol 30(2):394–399

    Article  Google Scholar 

  • Aragao FJ, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  CAS  PubMed  Google Scholar 

  • Ateyyat MA, Shatnawi M, Mohammad SA (2009) Culturable Whitefly associated bacteria and their potential as biological control agents 2(3):139–144

    Google Scholar 

  • Azzam OJ, Frazer D, La Rosa D, Beaver JS, Ahlquist P, Maxwell DP (1994) Whitefly transmission and efficient ssDNA accumulation of bean golden mosaic geminivirus require functional coat protein. Virology 204:289–296

    Article  CAS  PubMed  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM et al (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145. doi:10.1038/nplants.2015.145

    Article  CAS  Google Scholar 

  • Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33(2):351–357

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-βsatellites of begomoviruses. Arch Virol 153:763–781

    Article  CAS  PubMed  Google Scholar 

  • Brown JK (2001) Molecular markers for the identification and global tracking of whitefly vector-begomovirus complexes. Virus Res 71:233–260

    Article  Google Scholar 

  • Brustolini OJB, Machado JPB, Condori-Apfata JA, Coco D, Deguchi M, Loriato VAP, Pereira WA, Alfenas-Zerbini P, Zerbini FM, Inoue-Nagata AK, Santos AA, Chory J, Silva FF, Fontes EPB (2015) Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnol J. doi:10.1111/pbi.12349

  • Butler GDJR, Henneberry TJ (1991) Sweetpotato whitefly control: effect of tomato cultures and plant derived oils. Southwest Entomol 16:37–43

    Google Scholar 

  • Byun HS, Kil EJ, Seo H, Suh SS, Lee TK, Lee JH, Kim JK, Lee KY, Ko SJ, Lee GS, Choi HS, Kim CS, Lee S (2016) First report of papaya leaf curl virus in papayas in Korea and recovery of its symptoms. Plant Dis 100(9):1958

    Article  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chang LS, Lee YS, Su HJ, Hung TH (2003) First report of papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis 87(2):204

    Article  Google Scholar 

  • Chen YK, Chao HY, Shih PJ, Tsai WY, Chao CH (2016a) First report of papaya leaf curl Guangdong virus infecting lisianthus in Taiwan. APS, Dis Notes 100(11):2342

    Google Scholar 

  • Chen H, Lin C, Tsai W et al (2016b) Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains. J Plant Biochem Biotechnol 25(2):199–207. doi:10.1007/s13562-015-0325-7

    Article  CAS  Google Scholar 

  • Cheng YH, Deng TC, Chen CC et al (2014) First report of Euphorbia leaf curl virus and papaya leaf curl Guangdong virus on passion fruit in Taiwan. Plant Dis 98(12):1746

    Article  Google Scholar 

  • Culik MP, Martins DDS (2004) First record of Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae) on Carica papaya L. in the state of Espírito Santo, Brazil. Neotrop Entomol 33(5):659–660

    Article  Google Scholar 

  • Culik MP, Martins DDS, Ventura JA (2003) Índice de artrópodes pragas do mamoeiro (Carica papaya L.). INCAPER, Vitória, p 48

    Google Scholar 

  • Czosnek H (2008) Acquisition, circulation and transmission of begomoviruses by their whitefly vectors. In: Viruses in the environment 37/661(2). Research Signpost, Trivandrum. ISBN: 978-81-308-0235-0

    Google Scholar 

  • Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Dawson WO, Hilf ME (1992) Host range determination of plant viruses. Annu Rev Plant Physiol Plant Mol Biol 43:527–555

    Article  CAS  Google Scholar 

  • Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88:6721–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey DK, Pandey N, Tiwari AK, Upadhaya PP (2015a) Biological properties, transmission, serological characterization and varietal susceptibility of an isolate of papaya leaf curl virus affecting papaya crops in eastern Uttar Pradesh, India. Arch Phytopathol Plant Protect. doi:10.1080/03235408.2015.1091135

  • Dubey DK, Tiwari AK, Upadhyay PP (2015b) Survey, incidence and serological identification of papaya leaf curl virus in eastern Uttar Pradesh. Indian Phytopath 68(1):123–126

    Google Scholar 

  • Edelbaum D, Gorovits R, Sasaki S, Ikegami M, Czosnek H (2008) Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to tomato yellow leaf curl virus and cucumber mosaic virus, but not to grapevine virus A or tobacco mosaic virus. Arch Virol 154:399–407

    Article  CAS  Google Scholar 

  • Erickson RP, Izant JG (1992) Gene regulation: biology of antisense RNA and DNA. Raven press, New York, p 364

    Google Scholar 

  • Flint ML (2015) Integrated pest management for homes, gardens, and landscapes. Pest Notes: Whiteflies Univ. Calif. Agric. Nat. Res. Publ.: 7401

    Google Scholar 

  • Fontes EPB, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus NSP acts as virulence factor to suppress an innate transmembrane receptor kinase-mediated defense signaling. Genes Dev 18:2545–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hort 695:225–240

    Article  Google Scholar 

  • Gafni Y, Epel B (2002) The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol 60:231–241

    Article  CAS  Google Scholar 

  • Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson RL, Rojas M, Natwick E (2011) Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci)-transmissible geminiviruses. In: Thompson WMO (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. pp 323–356

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol 2:67–93

    Article  CAS  PubMed  Google Scholar 

  • Gillette WK, Meade TJ, Jeffrey JL, Petty IT (1998) Genetic determinants of host-specificity in bipartite geminivirus DNA A components. Virology 251:361–369

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves C, Lee DR, Gonsalves D (2007) The adoption of genetically modified papaya in Hawaii and its implications for developing countries. J Dev Stud 43(1):177–191

    Article  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Guo Q, Cui X, Liu Y et al (2015) Comparison of transmission of papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex. Sci Rep 5:15432. doi:10.1038/srep15432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallan V, Saxena S, Singh BP (1998a) Ageratum, croton and malvastrum harbour geminiviruses: evidence through PCR amplification. World J Microb Biot 14:931–932

    Article  Google Scholar 

  • Hallan V, Saxena S, Singh BP (1998b) Yellow net of Triumfetta is caused by a geminivirus: a first report. Plant Dis 82(1):127.1–127.1

    Article  Google Scholar 

  • Hanson P, Lu SF, Wang JF, Chen W, Kenyon L et al (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic 201:346–354

    Article  CAS  Google Scholar 

  • Haung JF, Zhou XP (2006) First report of papaya leaf curl China virus infecting Corchoropsis tomentosa in China. Plant Pathol 55:291

    Article  Google Scholar 

  • Hemambara HS, Yogesh MS (2014) Production and marketing problems of papaya growers in north Karnataka. IOSR-JBM 16(7):20–23

    Google Scholar 

  • Ilyas M, Qazi J, Mansoor S, Briddon RW (2010) Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J Gen Virol 91:2091–2101

    Article  CAS  PubMed  Google Scholar 

  • Indian Horticulture Database, Saxena M, Gandhi CP (eds) National Horticulture Board, Ministry of Agriculture, Government of India, Gurgaon. p 248. URL: http://nhb.gov.in/area-pro/NHB_Database_2015.pdf. Accessed 15 Jan 2017

  • Inoue-Nagata AK, Lima MF, Gilbertson RL (2016) A review of geminivirus (begomovirus) diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic Bras 34:8–18

    Article  Google Scholar 

  • Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475. doi:10.3389/fpls.2016.00475

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492

    Article  CAS  PubMed  Google Scholar 

  • Javaid S, Amin I, Jander G, Mukhtar Z (2016) A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Sci Rep 6:34706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR– Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:144. doi:10.1038/nplants.2015.144

    Google Scholar 

  • Khalil RR, Bassiouny FM, El-Dougdoug KA, Abo-Elmaty S, Yousef MS (2014) A dramatic physiological and anatomical changes of tomato plants infecting with tomato yellow leaf curl geminivirus. J Agric Tech 10(5):1213–1229

    Google Scholar 

  • Khan MS, Tiwari AK, Ji SH, Chun SC (2012) Ageratum conyzoides and its role in begomoviral epidemics; Ageratum enation virus: an emerging threat in India. Vegetos 24(2):20–28

    Google Scholar 

  • Khan MS, Tiwari AK, Khan AA, Ji SH, Chun SC (2013) Tomato yellow leaf curl virus (TYLCV) and its possible management: a review. Vegetos 26(2S):139–147

    Google Scholar 

  • Khan MS, Tiwari AK, Raj SK, Srivastava A, Ji SH, Chun SC (2014) Molecular epidemiology of begomoviruses occurring on vegetables, grain legume and weed species in Terai belt of north India. J Plant Dis Protect 121(2):53–57

    Article  CAS  Google Scholar 

  • Khatoon S, Kumar A, Sarin NB, Khan JA (2016) RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes 52:530–537

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Kumar A, Khan JA, Aminuddin (2009) First report of papaya leaf curl virus naturally infecting tobacco in India. J Plant Path 91(4 - Supplement):S4–107

    Google Scholar 

  • Kunik T, Salomon R, Zamair D, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12:500–504

    Article  CAS  PubMed  Google Scholar 

  • Lapidot M, Friedman M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127. doi:10.1111/j.1744-7348.2002.tb00163.x

    Article  Google Scholar 

  • Lee W, Park J, Lee GS, Seunghwan LS, Akimoto SI (2013) Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8(5):e63817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legaspi JC, Simmons AM (2012) Evaluation of selected commercial oils as oviposition deterrents against the silverleaf whitefly, Bemisia argentifolii (Hemiptera: Aleyrodidae). Subtrop Plant Sci 64:49–53

    Google Scholar 

  • Lilley DMJ (2003) The origins of RNA catalysis in ribozymes. Trends Biochem Sci 28:495–501

    Article  CAS  PubMed  Google Scholar 

  • Lindbo J, Silva-Rosales L, Proebsting W, Dougherty W (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez EP, Pantoja ML (2012) Main bacterial diseases affecting papaya, pineapple and mangoes. Citrifrut 29(1):28–34

    Google Scholar 

  • Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, Zhang CX, Liu SS, Wang XW (2011) Global analysis of the transcriptional response of whitefly to Tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol 85:3330–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macpherson JL, Boyd MP, Arndt AJ, Todd AV, Fanning GC, Ely JA, Elliott F, Knop A, Raponi M et al (2005) Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J Gene Med 7:552–564

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Briddon RW, Bull SE, Bedford ID, Bashir A, Hussain M et al (2003) Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA beta. Arch Virol 148:1969–1986

    Article  CAS  PubMed  Google Scholar 

  • Marathe R, Anandalakshmi R, Smith TH, Pruss GJ, Vance VB (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol Biol 43:295–306

    Article  CAS  PubMed  Google Scholar 

  • Masabni J, Anciso J, Wallace R (2011) What makes tomato leaves twist or curl? Texas A&M AgriLife Extension Service: E-626. AgriLifeExtension.tamu.edu

    Google Scholar 

  • Maule AJ, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8:223–231

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566. doi:10.1094/PHYTO-05-11-0157

    Article  PubMed  Google Scholar 

  • Mishra M, Chandra R, Saxena S (2007) Papaya. In: Kole C (ed) Genome mapping and molecular breeding in plants- fruits and nuts, vol 4. Springer, New York, pp 230–257

    Google Scholar 

  • Mishra SK, Chilakamarthi U, Deb JK, Mukherjee SK (2014) Unfolding of in planta activity of anti-rep ribozyme in presence of a RNA silencing suppressor. FEBS Lett 588:1967–1972

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Gaur R K, Patil BL (2016) Current knowledge of viruses infecting papaya and their transgenic management. Chapter Plant viruses: evolution and management, pp 189–203

    Google Scholar 

  • Morales FJ (2001) Conventional breeding for resistance to Bemisia tabaci-transmitted geminiviruses. Crop Prot 20:825–834

    Article  Google Scholar 

  • Morroni M, Thompson JR, Tepfer M (2008) Twenty years of transgenic plants resistant to cucumber mosaic virus. Mol Plant-Microbe Interact 21:675–684

    Article  CAS  PubMed  Google Scholar 

  • Nadeem A, Mehmood T, Tahir M, Khalid S, Xiong Z (1997) First report of papaya leaf curl disease in Pakistan. Plant Dis 81(11):1333

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotech 24:1420–1428

    Article  CAS  Google Scholar 

  • Pantoja A, Follett PA, Villanueva-Jiménez JA (2002) Pests of papaya. In: Pena J, Sharp J, Wysoki M (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control, pp 131–156

    Google Scholar 

  • Papaya Diseases & its Control (n.d.) http://agropedia.iitk.ac.in. Accessed 22 Dec 2016

  • Paula FT, Gustavo AF, Marcia ER (2007) Viruses infecting papaya (Carica papaya L.): etiology, pathogenesis and molecular biology. Plant Viruses 1(2):172–188

    Google Scholar 

  • Pramesh D, Mandal B, Phaneendra C, Muniyappa V (2013) Host range and genetic diversity of croton yellow vein mosaic virus, a weed-infecting monopartite begomovirus causing leaf curl disease in tomato. Arch Virol 158:531–542. doi:10.1007/s00705-012-1511-8

    Article  CAS  PubMed  Google Scholar 

  • Prasad JS, Verma RAB (1980) Efficacy of certain antibiotics in the control of postharvest decay of papaya fruits. Phytoparasitica 8:105. doi:10.1007/BF02994505

    Article  CAS  Google Scholar 

  • Raj SK, Snehi SK, Khan MS, Singh R, Khan AA (2008) Molecular evidence for association of tomato leaf curl New Delhi virus with leaf curl disease of papaya (Carica papaya L.) in India. Australasian Plant Dis. Notes 3:152–155

    Article  CAS  Google Scholar 

  • Raj SK, Snehi SK, Tiwari AK, and Rao GP (2010) Biological, molecular identification and management strategies of Begomovirus infecting cucurbitaceous crops in India, Published from LLC Press USA (2010) Recent trades in Plant Virology. In: Rao GP, Baranawal VK, Mandal B, Rishi N (eds). Studium Press LLC, USA, p 135–155

    Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Rawell RD (2010) Fungal diseases of papaya and their management. IInd international symposium on papaya, ISHS Acta hort 851, 10.17660/ActaHortic.2010.851.68

  • Raza A, Malik HJ, Shafiq M, Amin I, Scheffler JA, Scheffler BE et al (2016) RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): potential technology for the control of whitefly. PLoS One 11(4):e0153883. https://doi.org/10.1371/journal.pone.0153883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy MK, Venkataravanappa V, Madhuvanthi B, Jalali S (2010) Molecular characterization of Begomoviruses associated with papaya leaf curl disease in India. IInd IS on Papaya Acta hort: 465–472. 10.17660/ActaHortic.2010.851.72

  • Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L (2013) Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87:9691–9706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ et al (2001) Functional analysis of proteins involved in movement of the monopartite Begomovirus, tomato yellow leaf curl virus. Virology 291:110–125. doi:10.1006/viro.2001.1194

    Article  CAS  PubMed  Google Scholar 

  • Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100:4429–4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed ST, Samad A (2016) Emerging threats of begomoviruses to the cultivation of medicinal and aromatic crops and their management strategies. VirusDis. doi:10.1007/s13337-016-0358-0

  • Sagar SB, Parmar HC, Darji VB (2012) Economics of production of papaya in middle Gujarat region of Gujarat, India. GJBAHS 1(2):10–17

    Google Scholar 

  • Sahu AK, Nehra C, Gaur RK (2015) Molecular diversity of monopartite begomovirus coat protein and betasatellite associated with different crop species in India. Phytoparasitica 43:81–85. doi:10.1007/s12600-014-0418-1

    Article  CAS  Google Scholar 

  • Saxena S, Hallan V, Singh BP, Sane PV (1998a) Leaf curl disease of Carica papaya from India may be caused by a bipartite geminivirus. Plant Dis 82(1):126

    Article  Google Scholar 

  • Saxena S, Hallan V, Singh BP, Sane PV (1998b) Evidence from nucleic acid hybridization tests for a geminivirus infection causing leaf curl disease of papaya in India. Indian J Exp Biol 36:229–232

    CAS  Google Scholar 

  • Saxena S, Hallan V, Singh BP, Sane PV (1998c) Nucleotide sequence and inter-geminiviral homologies of the DNA A of papaya leaf curl geminivirus from India. Biochem Mol Biol Int 45:101–113

    CAS  PubMed  Google Scholar 

  • Saxena S, Chandra R, Srivastava AP, Mishra M, Pathak RK, Ranade SA (2005) Analysis of genetic diversity among papaya cultivars using single primer amplification reaction (SPAR) methods. J Hort Sci Tech 80(3):291–296

    CAS  Google Scholar 

  • Saxena S, Singh N, Ranade SA, Sunil GB (2011) Strategy for generic resistance to geminiviruses infecting tomato and papaya through in silico siRNA search. Virus Genes 43:409–434

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Rupesh KK, Singh V (2013) Designing of putative siRNA against geminiviral suppressors of RNAi to develop geminivirus-resistant papaya crop. Int J Bioinforma Res Appl 9(1):3–12

    Article  CAS  Google Scholar 

  • Saxena S, Singh VK, Verma S (2016) PCR mediated detection of sex and PaLCuV infection in papaya- a review. J Appl Hortic 18(1):80–84

    Google Scholar 

  • Schubert S, Kurreck J (2004) Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 5:667–681

    Article  CAS  PubMed  Google Scholar 

  • Settlage SB, See RG, Hanley-Bowdoin L (2005) Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 79:9885–9895. doi:10.1128/JVI.79.15.9885-9895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H et al (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Sieburth LE, Drews GN, Meyerowitz EM (1998) Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125:4303–4312

    CAS  PubMed  Google Scholar 

  • Srivastava N, Chandra R, Saxena S, Bajpai A (2010) PCR based amplification and detection of papaya leaf curl virus (PaLCuV). A proceeding of IInd IS on papaya. Acta Hort 851:241–245

    Article  CAS  Google Scholar 

  • Srivastava A, Raj SK, Kumar S, Snehi SK (2013) New record of papaya leaf curl virus and ageratum leaf curl beta-satellite associated with yellow vein disease of aster in India. New Dis Rep 28:6

    Article  Google Scholar 

  • Srivastava A, Jaidi M, Kumar S, Raj SK, Shukla S (2015) Association of papaya leaf curl virus with the leaf curl disease of grain amaranth (Amaranthus cruentus L.) in India. Phytoparasitica 43:97–101

    Article  CAS  Google Scholar 

  • Sunitha S, Marian D, Hohn B, Veluthambi K (2011) Antibegomoviral activity of the agrobacterial virulence protein VirE2. Virus Genes 43:445–453

    Article  CAS  PubMed  Google Scholar 

  • Tajul MI, Naher K, Hossain T, Siddiqui Y, Sariah M (2011) Tomato yellow leaf curl virus (TYLCV) alters the phytochemical constituents in tomato fruits. AJCS 5:575–581

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DR (2001) Virus diseases of Carica papaya in Africa – their distribution, importance, and control. Rice Research Station, PMB 736, Freetown, Sierra Leone, Plant virology in sub-Saharan Africa

    Google Scholar 

  • Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS One 9(3):e87235. https://doi.org/10.1371/journal.pone.0087235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas KM, Krishnaswamy CS (1939) Leaf crinkle: a transmissible disease of papaya. Curr Sci 8:316

    Google Scholar 

  • Tiwari AK, Rao GP (2014) Viruses infecting Cucurbita pepo: current status and management. In: Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. © Springer, India. 2014, pp 357–371

    Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:7–20

    Article  CAS  Google Scholar 

  • Usman N, Blatt LM (2000) Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest 106:1197–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira MR, Correa LS (2001) Whiteflies (Hemiptera: Aleyrodidae) and the predator Delphastus pusillus (le Conte) (Coleoptera: Coccinellidae) on papaya tree (Carica papaya L.) grown under screened conditions. Neotrop Entomol 30:171–173

    Article  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Xie YZhou XP (2004) Molecular characterization of two distinct begomoviruses from papaya in China. Virus Genes 29:303–309

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Wang XR, Wei XM, Huang H, Wu JX, Chen XX et al (2016) The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12(9):1560–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng DE, Masci PA, Radka SF, Jackson TE, Weiss PA, Ganapathi R, Elson PJ, Capra WB, Parker VP, Lockridge JA, Cowens JW, Usman N, Borden EC (2005) A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 4:948–955

    Article  CAS  PubMed  Google Scholar 

  • Yang CX, Luo JS, Zheng LM, Wu ZJ, Xie LH (2011) Mixed infection of papaya leaf curl China virus and Siegesbeckia yellow vein virus in Sigesbeckia orientalis in China. J Plant Pathol 93(4, Supplement):S4–81

    Google Scholar 

  • Yeam I (2016) Current advances and prospectus of viral resistance in horticultural crops. Hortic Environ Biotechnol 57(2):113–122. 2016. doi:10.1007/s13580-016-0105-x

    Article  CAS  Google Scholar 

  • Zhang H, Ma XY, Qian YJ, Zhou XP (2010) Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. J Zhejiang Univ-SCI B 11:109–114. 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinnen SP, Domenico K, Wilson M, Dickinson BA, Beaudry A, Mokler V, Daniher AT, Burgin A, Beigelman L (2002) Selection, design, and characterization of a new potentially therapeutic ribozyme. RNA 8:214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Varun, P., Saxena, S. (2017). Leaf Curl Disease of Carica papaya . In: Saxena, S., Tiwari, A. (eds) Begomoviruses: Occurrence and Management in Asia and Africa. Springer, Singapore. https://doi.org/10.1007/978-981-10-5984-1_7

Download citation

Publish with us

Policies and ethics