Skip to main content

Microelectrode Array

  • Reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

Microelectrode arrays (MEAs) have been applied as chronical interface with the neural system and play important roles in neural prosthesis for various diseases, including sensory and motion injuries such as blind, deaf, and paralyzed, and also mental diseases like depression, Parkinson’s disease, and epilepsy. Thanks the inherent merits of microfabrication, MEAs show the advantages of low cost, mass production, high density, flexibility (optional), small footprint, integratability with ICs (integrated circuits), etc. In this chapter, we discuss about the general requirements and consideration of materials, design, and fabrication of MEAs in details. Then the various devices and their applications in the central nervous system and the peripheral nervous system are overviewed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew WF, McCreery DB, Yuen TGH (1989) Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng 17(1):39–60

    Article  Google Scholar 

  • Bhandari R et al (2008) A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens Actuators A Phys 145–146(1–2):123–130

    Article  Google Scholar 

  • Boretius T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26(1):62–69

    Article  Google Scholar 

  • Branner A, Normann RA (2000) A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull 51(4):293–306

    Article  Google Scholar 

  • Branner A, Stein RB, Normann RA (2001) Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol 85(4):1585–1594

    Article  Google Scholar 

  • Carp JS et al (2005) Long-term spinal reflex studies in awake behaving mice. J Neurosci Methods 149(2):134–143

    Article  Google Scholar 

  • Castoro MA (2011) Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 227(1):62–68

    Article  Google Scholar 

  • Cheung KC, Renaud P, Tanila H (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22(8):1783–1790

    Article  Google Scholar 

  • Chow AY et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469

    Article  Google Scholar 

  • Chu JU (2012) Improvement of signal-to-interference ratio and signal to noise ratio in nerve cuff electrode systems. Physiol Meas 33(6):943–967

    Article  Google Scholar 

  • Cobo AM et al (2017) A parylene cuff electrode for peripheral nerve recording and drug delivery. In: IEEE MEMS, pp 506–509

    Google Scholar 

  • Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309

    Article  Google Scholar 

  • Crago PE, Peckham PH, Thrope GB (1980) Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng 12:679–684

    Article  Google Scholar 

  • De Ferrari GM (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855

    Article  Google Scholar 

  • Eastwood PR (2011) Treating obstructive sleep apnea with hypoglossal nerve stimulation. Sleep 34(11):1479–1486

    Article  Google Scholar 

  • Egert D, Peterson RL, Najafi K (2011) Parylene microprobes with engineered stiffness and shape for improved insertion. In: Solid-state sensors, actuators and microsystems conference (Transducers), pp 198–201

    Google Scholar 

  • Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104

    Article  Google Scholar 

  • Ethier C et al (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371

    Article  Google Scholar 

  • Fomani AA, Mansour RR (2010) Flexible neural microelectrode arrays reinforced with embedded metallic micro-needles. In: 2010 I.E. sensors, pp 1601–1604

    Google Scholar 

  • Gekeler F et al (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242:587–596

    Article  Google Scholar 

  • Gekeler F et al (2007) Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 245:230–241

    Article  Google Scholar 

  • Glenn WW, Phelps ML (1985) Diaphragm pacing by electrical stimulation of the phrenic nerve. Neurosurgery 17(6):974–984

    Article  Google Scholar 

  • González C, RodrĂ­guez M (1997) A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues. J Neurosci Methods 72(2):189–195

    Article  MathSciNet  Google Scholar 

  • Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci B Polym Phys 49(1):18–33

    Article  Google Scholar 

  • Holman G et al (2002) Silicon micro-needles with flexible interconnections. In: IEEE-EMBS, pp 255–260

    Google Scholar 

  • Huang R et al (2008) Integrated parylene-cabled silicon probes for neural prosthetics. In: MEMS 2008, pp 240–243

    Google Scholar 

  • Humayun MS (2001) Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 99:271–300

    Google Scholar 

  • Jeong J et al (2013) Advancements in fabrication process of microelectrode array for a retinal prosthesis using liquid crystal polymer (LCP). In: 35th annual international conference of the IEEE EMBS, pp 5295–5298

    Google Scholar 

  • Johnson L et al (2004) Electrical stimulation of isolated retina with microwire glass electrodes. J Neurosci Methods 137(2):265–273

    Article  Google Scholar 

  • Kang X, Liu JQ, Tian H (2015) Self-closed parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332

    Article  Google Scholar 

  • Keseru M et al (2012) Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 90:1–8

    Article  Google Scholar 

  • Kim D et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9:511–517

    Article  Google Scholar 

  • Ko H, Lee S (2017) Electrical characterization of 2D and 3D microelectrodes for achieving high resolution sensing in retinal prostheses with in vitro animal experimental results. Microsyst Technol 23(2):473–481

    Article  Google Scholar 

  • Larsen JO et al (1998) Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol 96(4):365–378

    Article  Google Scholar 

  • Lawrence SM, Dhillon GS, Horch KW (2003) Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J Neurosci Methods 131:9–26

    Article  Google Scholar 

  • Lee S (2017) Top-down fabrication of silicon nanowire arrays for large scale integration on a flexible substrate for achieving high resolution neural microelectrodes. Microsyst Technol 23(2):491–498

    Article  Google Scholar 

  • Lee K, Singh A, He J (2004) Polyimide based neural implants with stiffness improvement. Sens Actuators B Chem 102(1):67–72

    Article  Google Scholar 

  • Lee S, Yen SC, Liao LD (2016) Flexible sling electrode for bidirectional neural signal recording and selective stimulation. In: IEEE MEMS, pp 375–378

    Google Scholar 

  • Loeb GE (1993) The distal hindlimb musculature of the cat: interanimal variability of locomotor activity and cutaneous reflexes. Exp Brain Res 96(1):125–140

    Article  Google Scholar 

  • Luo YH-L, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107

    Article  Google Scholar 

  • Mackinnon SE et al (1984) Chronic nerve compression – an experimental model in the rat. Ann Plast Surg 13(2):112–120

    Article  Google Scholar 

  • Margalit E et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356

    Article  Google Scholar 

  • Matzel KE et al (2001) Chronic sacral spinal nerve stimulation for fecal incontinence: longterm results with foramen and cuff electrodes. Dis Colon Rectum 44(1):59–66

    Article  Google Scholar 

  • McNeal DR, Bowman BR (1985) Selective activation of muscles using peripheral nerve electrodes. Med Biol Eng Comput 23(3):249–253

    Article  Google Scholar 

  • Motta PS, Judy JW (2005) Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng 52(5):923–933

    Article  Google Scholar 

  • Najafi K, Wise KD, Mochizuki T (1985) A high-yield IC-compatible multichannel recording array. IEEE Trans Electron Devices 32(7):1206–1211

    Article  Google Scholar 

  • Naples GG et al (1988) A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng 35(11):905–916

    Article  Google Scholar 

  • Navarro X, Valderrama E, Stieglitz T (2001) Selective fascicular stimulation of the rat sciatic nerve with multipolar polyimide cuff electrodes. Restor Neurol Neurosci 18(1):9–21

    Google Scholar 

  • Normann RA et al (1999) A neural interface for a cortical vision prosthesis. Vis Res 39(15):2577–2587

    Article  Google Scholar 

  • Palanker D et al (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2:S105–S120

    Article  Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360

    Article  Google Scholar 

  • Polasek KH et al (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437

    Article  Google Scholar 

  • Pratt CA, Chanaud CM, Loeb GE (1991) Functionally complex muscles of the cat hindlimb. Exp Brain Res 85(2):281–299

    Article  Google Scholar 

  • Randles JEB (1947) Kinetics of rapid electrode reactions. In: Discuss Faraday SOC, pp 11–19

    Article  Google Scholar 

  • Rijkhoff NJ (1994) Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng 41(5):413–424

    Article  Google Scholar 

  • Rodger D et al (2008) Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem 132(2):449–460

    Article  Google Scholar 

  • RodrĂ­guez FJ (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98(2):105–118

    Article  Google Scholar 

  • Roessler G et al (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50:3003–3008

    Article  Google Scholar 

  • Rousche J, Normann A (1999) Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah intracortical electrode array. IEEE Trans Rehabil Eng 7(1):56–68

    Article  Google Scholar 

  • Rui Y et al (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442

    Article  Google Scholar 

  • Ryu M et al (2017) Enhancement of interface characteristics of neural probe based on graphene, ZnO nanowires, and conducting polymer PEDOT. ACS Appl Mater Interfaces 9:10577–10586

    Article  Google Scholar 

  • Struijk JJ et al (1999) Cuff electrodes for long-term recording of natural sensory information. IEEE Eng Med Biol Mag 18(3):91–98

    Article  Google Scholar 

  • Strumwasser F (1958) Long-term recording from single neurons in brain of unrestrained mammals. Science 127(3296):469–470

    Article  Google Scholar 

  • Takeuchi S et al (2004) 3D flexible multichannel neural probe array. J Micromech Microeng 14(1):104–107

    Article  Google Scholar 

  • Tombran-Tink J, Barnstable CJ, Rizzo III JF (2007) VISUAL PROSTHESIS AND OPHTHALMIC DEVICES

    Google Scholar 

  • Velliste M et al (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101

    Article  Google Scholar 

  • Wang R et al (2010) Fabrication and characterization of a parylene-based 3D microelectrode array for use in retinal prosthesis. J Microelectromech Syst 19:367–374

    Article  Google Scholar 

  • Wang R et al (2012) A flexible microneedle electrode array with solid silicon needles. J Microelectromech Syst 21(5):1084–1089

    Article  Google Scholar 

  • Wang R et al (2017) A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens Actuators B Chem 244:750–758

    Article  Google Scholar 

  • Waschkowski F et al (2014) Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online 13:1–15

    Article  Google Scholar 

  • Waters RL et al (1985) Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Joint Surg Am 67(5):792–793

    Article  Google Scholar 

  • Weiland JD et al (2006) Implantation of an inactive epiretinal poly (dimethyl siloxane) electrode array in dogs. Exp Eye Res 82:81–90

    Article  Google Scholar 

  • Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 3:212–219

    Article  Google Scholar 

  • Wise KD et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97

    Article  Google Scholar 

  • Yamagiwa S, Ishida M, Kawano T (2013) Self-curling and -sticking flexible substrate for ECOG electrode array. In: IEEE MEMS, pp 480–483

    Google Scholar 

  • Yoo PB, Durand DM (2005) Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans Biomed Eng 52(8):1461–1469

    Article  Google Scholar 

  • Yu H et al (2013) Electroplated nickel multielectrode microprobes with flexible parylene cable for neural recording and stimulation. J Microelectromech Syst 22(5):1199–1206

    Article  Google Scholar 

  • Yu H et al (2014) A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J Microelectromech Syst 23(5):1025–1035

    Article  Google Scholar 

  • Zhang X et al (2011) Characterization of a light switchable microelectrode array for retinal prosthesis. Appl Phys Lett 99:253702

    Article  Google Scholar 

  • Zhou DD, Greenbaum E (2009) Implantable neural prostheses 1:devices and applications

    Google Scholar 

  • Zhou H et al (2009) A new process for fabricating tip-shaped polymer microstructure array with patterned metallic coatings. Sens Actuators A Phys 150:296–301

    Article  Google Scholar 

  • Zrenner E et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Roy Soc B-Biol Sci 278:1489–1497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, R., Yu, H., Li, Z. (2018). Microelectrode Array. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_41

Download citation

Publish with us

Policies and ethics