Skip to main content

High-Performance Acoustic Devices for Wireless Communication and Sensor Applications

  • Reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT))

  • 3134 Accesses

Abstract

Surface acoustic wave (SAW) resonators and film bulk acoustic resonators (FBAR) are two of the most important passive resonators. After several decades of research and development, they are widely applied for wireless communications such as filters and duplexers, and broad sensing applications like pressure sensors, temperature sensors, gas sensors, biosensors, photoelectric sensors, and many others. In this chapter, we first introduce basic concepts and mainstream topics of SAW and FBAR devices. Then we give a detailed presentation of several methods to fabricate high-performance resonators including using multilayered structures and improved process. Flexible SAW and FBAR devices are also introduced. Several sensing applications are given afterwards. Finally, a summary and outlook is presented regarding the further improvement of device performance and new research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Tahir FA, Shamim A (2015) A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices. IEEE Antennas Wirel Propag Lett 14:1802–1805

    Article  Google Scholar 

  • Bo L, Xiao C, Hualin C (2016) Surface acoustic wave devices for sensor applications. J Semicond 37(2):021001

    Article  Google Scholar 

  • Cai HL, Yang Y, Zhang YH (2014) A high sensitivity wireless mass-loading surface acoustic wave DNA biosensor. Mod Phys Lett B 28(07):1450056

    Article  Google Scholar 

  • Cai HL, Yang Y, Chen X (2015) A third-order mode high frequency biosensor with atomic resolution. Biosens Bioelectron 71:261–268

    Article  Google Scholar 

  • Campbell C (1989) Surface acoustic wave devices and their signal processing applications. Academic, Boston

    Google Scholar 

  • Carpentier JF, Cathelin A, Tilhac C (2005) A SiGe: C BiCMOS WCDMA zero-IF RF front-end using an above-IC BAW filter, Solid-state circuits conference, 2005. Digest of technical papers. ISSCC. 2005 I.E. International. IEEE, San Francisco, CA, USA

    Google Scholar 

  • Chen NH, Huang JC, Wang CY (2011) Fabrication of a GHz band surface acoustic wave filter by UV-nanoimprint with an HSQ stamp. J Micromech Microeng 21(4):045021

    Article  Google Scholar 

  • Chen X, Mohammad MA, Conway J (2015) High performance lithium niobate surface acoustic wave transducers in the 4–12 GHz super high frequency range. J Vac Sci Technol B Nanotechnol Microelectron: Mater Process Meas Phenom 33(6):06F401

    Article  Google Scholar 

  • Dogheche E, Remiens D, Shikata S (2005) High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure. Appl Phys Lett 87(21):213503

    Article  Google Scholar 

  • Dubois MA, Muller C (2013) Thin-film bulk acoustic wave resonators. In: MEMS-based circuits and systems for wireless communication. Springer, New York

    Google Scholar 

  • Hashimoto K, Sato S, Teshigahara A (2013) High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure. IEEE Trans Ultrason Ferroelectr Freq Control 60(3):637–642

    Article  Google Scholar 

  • Johnston ML, Kymissis I, Shepard KL (2010) FBAR-CMOS oscillator array for mass-sensing applications. IEEE Sensors J 10(6):1042–1047

    Article  Google Scholar 

  • Jung YH, Qiu Y, Lee S (2016) A compact parylene-coated WLAN flexible antenna for implantable electronics. IEEE Antennas Wirel Propag Lett 15:1382–1385

    Article  Google Scholar 

  • Kerhervé E, Ancey P, Aid M (2006) 4D-5 BAW technologies: development and applications within MARTINA, MIMOSA and MOBILIS IST European projects, Ultrasonics symposium, 2006. IEEE

    Google Scholar 

  • Khang DY, Jiang H, Huang Y (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758):208–212

    Article  Google Scholar 

  • Kim J, Son D, Lee M (2016) A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci Adv 2(1):e1501101

    Article  Google Scholar 

  • Lee TC, Lee JT, Robert MA (2003) Surface acoustic wave applications of lithium niobate thin films. Appl Phys Lett 82(2):191–193

    Article  Google Scholar 

  • Morgan D (2010) Surface acoustic wave filters: with applications to electronic communications and signal processing. Academic, Amsterdam

    Google Scholar 

  • Nakahata H, Fujii S, Higaki K (2003) Diamond-based surface acoustic wave devices. Semicond Sci Technol 18(3):S96

    Article  Google Scholar 

  • Nakamura H, Nakanishi H, Tsurunari T (2008) Miniature surface acoustic wave duplexer using SiO2/Al/LiNbO3 structure for wide-band code-division multiple-access system. Jpn J Appl Phys 47(5):4052–4055

    Article  Google Scholar 

  • Nam K, Park Y, Ha B (2008) Monolithic 1-chip FBAR duplexer for W-CDMA handsets. Sensors Actuators A Phys 143(1):162–168

    Article  Google Scholar 

  • Oh JY, Rondeau-Gagné S, Chiu YC (2016) Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539(7629):411–415

    Article  Google Scholar 

  • Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001

    Article  Google Scholar 

  • Ruby R, Bradley P, Larson JD (1999) PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs). Electron Lett 35(10):794–795

    Article  Google Scholar 

  • Setter N, Damjanovic D, Eng L (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100(5):051606

    Article  Google Scholar 

  • Shung KK, Cannata JM, Zhou QF (2007) Piezoelectric materials for high frequency medical imaging applications: a review. J Electroceram 19(1):141–147

    Article  Google Scholar 

  • Sung PH, Chen PY, Chin YC (2007) Method of forming film bulk acoustic wave filter assembly. US Patent 7,214,564

    Google Scholar 

  • Tian XG, Tao LQ, Liu B (2016a) Surface acoustic wave devices based on high quality temperature-compensated substrates. IEEE Electron Device Lett 37(8):1063–1066

    Article  Google Scholar 

  • Tian XG, Liu H, Tao LQ (2016b) High-resolution, high-linearity temperature sensor using surface acoustic wave device based on LiNbO3/SiO2/Si substrate. AIP Adv 6(9):095317

    Article  Google Scholar 

  • Wang L, Rokhlin SI (2001) Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39(6):413–424

    Article  Google Scholar 

  • White RM, Voltmer FW (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7(12):314–316

    Article  Google Scholar 

  • Xiao C, Yi Y, Hua-Lin C (2014) A multiple resonant mode film bulk acoustic resonator based on silicon-on-insulator structures. Chin Phys Lett 31(12):124302

    Article  Google Scholar 

  • Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46:379–406

    Article  MathSciNet  Google Scholar 

  • Zhou C, Yang Y, Zhan J (2011) Surface acoustic wave characteristics based on c-axis (006) LiNbO3/diamond/silicon layered structure. Appl Phys Lett 99(2):022109

    Article  Google Scholar 

  • Zhou CJ, Yang Y, Shu Y (2012) Ultra flexible pseudo-lamb wave RF resonators based on ZnO/PI and AlN/PI structures, Electron Devices Meeting (IEDM), 2012 IEEE International (pp. 5–4)

    Google Scholar 

  • Zhou CJ, Yang Y, Shu Y (2013a) Visible-light photoresponse of AlN-based film bulk acoustic wave resonator. Appl Phys Lett 102(19):191914

    Article  Google Scholar 

  • Zhou C, Yang Y, Jin H (2013b) Surface acoustic wave resonators based on (002) AlN/Pt/diamond/silicon layered structure. Thin Solid Films 548:425–428

    Article  Google Scholar 

  • Zhou C, Yang Y, Cai H (2013c) Temperature-compensated high-frequency surface acoustic wave device. IEEE Electron Device Lett 34(12):1572–1574

    Article  Google Scholar 

  • Zhou C, Shu Y, Yang Y (2015) Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics. J Micromech Microeng 25(5):055003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Ling Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, C., Tian, X., Ren, TL. (2018). High-Performance Acoustic Devices for Wireless Communication and Sensor Applications. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_35

Download citation

Publish with us

Policies and ethics