Skip to main content

A Double Differential Torsional MEMS Accelerometer with Improved Temperature Robustness

  • Reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT))

  • 3109 Accesses

Abstract

This chapter presents the fundamental theory, mechanical design, fabrication technique, detecting circuit, and characterization of a novel double differential capacitive torsional accelerometer. The accelerometer consists of a double differential sensing structure with four proof masses hanging on a common V-shaped torsional beam which mainly aims to improve the temperature robustness and long-term performance of the torsional accelerometer. This chapter supplies a new method for the accelerometer performances improvement and this method can also be used in the design of other sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acar C, Shkel A, SpringerLink EE (2008) MEMS vibratory gyroscopes: structural approaches to improve robustness. Springer London, Guildford/Boulder

    Google Scholar 

  • Andersson G, Hedenstierna N, Svensson P (1999) A novel silicon bulk gyroscope. TRANSDUCERS ’99, Sendai, pp 902–905

    Google Scholar 

  • Bao M (2005) Analysis and design principles of MEMS devices. Elsevier Science [Imprint], San Diego

    Google Scholar 

  • Dong H, Jia Y, Hao Y et al (2005) A novel out-of-plane MEMS tunneling accelerometer. Sensors Actuators A Phys 120(2):360–364

    Article  Google Scholar 

  • Elwenspoek M, Wiegerink R (2001) Silicon micromachining. In: Suleman A (ed) Smart structures: applications and related technologies. Springer Vienna, Vienna, pp 241–264

    Google Scholar 

  • Fischer AC, Forsberg F, Lapisa M et al (2015) Integrating MEMS and ICs. Microsyst Nanoeng 1:15005

    Article  Google Scholar 

  • Garraud A, Giani A, Combette P et al (2011) A dual axis CMOS micromachined convective thermal accelerometer. Sensors Actuators A Phys 170(1):44–50

    Article  Google Scholar 

  • Ghisi A, Mariani S, Corigliano A et al (2012) Physically-based reduced order modelling of a uni-axial polysilicon MEMS accelerometer. Sensors (Basel) 12(10):13985–14003

    Article  Google Scholar 

  • Haris M, Qu HW (2010) Fully differential CMOS-MEMS z-axis accelerometer with torsional structures and planar comb fingers. J Micro-Nanolithography Mems Moems 9(1):13031

    Article  Google Scholar 

  • Hiratsuka R, van Duyn DC, Otaredian T et al (1991) A novel accelerometer based on a silicon thermopile. pp 420–423

    Google Scholar 

  • Iliescu C, Chen B, Miao J (2008) On the wet etching of Pyrex glass. Sens Actuators A Phys 143(1):154–161

    Article  Google Scholar 

  • Korvink JG, Paul O, Ebrary E et al (2006) MEMS: a practical guide to design, analysis, and applications. W. Andrew, Norwich/Heidelberg

    Book  Google Scholar 

  • Kubena RL, Atkinson GM, Robinson WP et al (1996) A new miniaturized surface micromachined tunneling accelerometer. IEEE Electron Device Lett 17(6):306–308

    Article  Google Scholar 

  • Laermer F, Schilp A, Funk K et al (1999) Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications

    Google Scholar 

  • Lee S, Najafi K (2007) A generic environment-resistant packaging technology for MEMS. In: The 14th international conference on solid-state sensors, actuators and microsystems. TRANSDUCERS 07, Lyon, June 2007, pp 335–338

    Google Scholar 

  • Lee I, Yoon GH, Park JY et al (2005) Development and analysis of the vertical capacitive accelerometer. Sensors Actuators A Phys 119(1):8–18

    Article  Google Scholar 

  • Li W, Song ZH, Li XL et al (2014) A novel sandwich capacitive accelerometer with a double-sided 16-beam-mass structure. Microelectron Eng 115:32–38

    Article  Google Scholar 

  • Liu C, Kenny TW (2001) A high-precision, wide-bandwidth micromachined tunneling accelerometer. J Microelectromech Syst 10(3):425–433

    Article  Google Scholar 

  • Liu Y, Zhao Y, Tian B et al (2014) Analysis and design for piezoresistive accelerometer geometry considering sensitivity, resonant frequency and cross-axis sensitivity. Microsyst Technol 20(3):463–470

    Article  Google Scholar 

  • Pinto D, Mercier D, Kharrat C (2009) A small and high sensitivity resonant accelerometer. Procedia Chem 1:4

    Article  Google Scholar 

  • Rocha LA, Silva CS, Cerqueira MF et al (2011) A microinjected 3-axis thermal accelerometer. Procedia Eng 25:607–610

    Article  Google Scholar 

  • RodjegÃ¥rd H, Anderson GI, Rusu C et al (2005a) Capacitive slanted-beam three-axis accelerometer II. Characterization. J Micromech Microeng 15:1997-2002

    Article  Google Scholar 

  • RodjegÃ¥rd H, Andersson GI, Rusu C et al (2005b) Capacitive slanted-beam three-axis accelerometer: I. Modelling and design. J Micromech Microeng 15:1989-1996

    Article  Google Scholar 

  • Rudolf F (1983) A micromechanical capacitive accelerometer with a two-point inertial-mass suspension. Sensors Actuators 4:191–198

    Article  Google Scholar 

  • Su JB, Xiao DB, Wang X et al (2014) Vibration sensitivity analysis of the ‘Butterfly-gyro’ structure. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 20(7):1281–1290

    Google Scholar 

  • Tan SS, Liu CY, Yeh LK et al (2011) A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability. J Micromech Microeng 21(3):35005

    Article  Google Scholar 

  • Tay FEH, Iliescu C, Jing J et al (2006) Defect-free wet etching through pyrex glass using Cr/Au mask. Microsyst Technol 12(10):935–939

    Article  Google Scholar 

  • Thomson WT, Dahleh MD (1998) Theory of vibration with applications. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  • Trusov AA, Zotov SA, Simon BR et al (2013) Silicon accelerometer with differential frequency modulation and continuous self-calibration. Micro Electro Mechanical Systems (MEMS), Jan 2013, pp 29–32

    Google Scholar 

  • Tseng SH, Wu PC, Tsai HH et al (2014) Monolithic z-axis CMOS MEMS accelerometer. Microelectron Eng 119:178–182

    Article  Google Scholar 

  • Xiao DB, Wang XH, Zhou ZL et al (2013) A novel fabrication method based on an after thermal oxidation process for the realization of silicon-beams with normative polygon cross sections shapes. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 19(7):1081–1086

    Google Scholar 

  • Xiao DB, Li QS, Hou ZQ et al (2016a) A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure. J Micromech Microeng 26(2):25005

    Article  Google Scholar 

  • Xiao D, Xia D, Li Q et al (2016b) A double differential torsional accelerometer with improved temperature robustness. Sensors Actuators A Phys 243:43–51

    Article  Google Scholar 

  • Yang B, Wang X, Dai B et al (2015) A new Z-axis resonant micro-accelerometer based on electrostatic stiffness. Sensors 15(1):687–702

    Article  Google Scholar 

  • Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640–1659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingbang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, D., Wu, X., Li, Q., Hou, Z. (2018). A Double Differential Torsional MEMS Accelerometer with Improved Temperature Robustness. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_17

Download citation

Publish with us

Policies and ethics