Skip to main content

Quorum Sensing in Plant Growth-Promoting Rhizobacteria and Its Impact on Plant-Microbe Interaction

  • Chapter
  • First Online:
Book cover Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Quorum sensing is a widespread mechanism in enormous number of bacteria for regulating various gene expression in a cell density-dependent manner through production and recognition of small molecules known as autoinducer. Diverse kinds of quorum-sensing networks are found in different bacterial species. Among various signal molecules, acyl homoserine lactone (AHL) signal molecules are the most and widely studied in bacteria. A number of simple to advanced techniques are being used to identify and characterize signal molecules. Production of signal molecules in a number of rhizospheric bacteria is documented. Rhizosphere is an active atmosphere where microbe-microbe and microbe-plant interaction is highest due to rich availability of nutrients provided in the form of root exudates. Several ecological and interdependent key characters of bacteria, like antibiotic, siderophore, or enzyme secretion, virulence factors of phytopathogens, as well as plant-microbe communications, are coordinated through quorum sensing (QS). In this chapter, we have provided brief fundamental aspects of quorum sensing and then addressed the recent trends on the significance of quorum sensing and signal molecules in microbe-microbe and microbe-plant interactions in the rhizosphere with special reference to plant growth-promoting rhizobacteria and plant health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Aqil F, Ahmad F et al (2008) Quorum sensing in bacteria: potential in plant health protection. In: Ahmad I, Hayat S, Pichtel J (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Germany, pp 129–153

    Chapter  Google Scholar 

  • Ahmad I, Khan MSA, Husain FM et al (2011) Bacterial quorum sensing and its interference: methods and significance. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 127–161

    Chapter  Google Scholar 

  • Alavi P, Muller H, Cardinale M et al (2013) The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants. PLoS One 8(7):e67103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JB, Heydorn A, Hentzer M (2001) gfp-based N-acyl homoserine lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audrain B, Farag MA, Ryu CM et al (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  PubMed  Google Scholar 

  • Bai X, Todd CD, Desikan R et al (2012) N-3-oxo-decanoyl-L homoserine lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Fray RG et al (2008a) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA et al (2008b) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interaction, strategies and techniques to promote plant growth. Wiley, Germany, pp 1–13

    Google Scholar 

  • Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bitas V, Kim HS, Bennet JW et al (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  • Braeken K, Daniels R, Ndayizeye M et al (2008) Quorum sensing in bacteria-plant interactions. In: Nautiyal C, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 265–289

    Chapter  Google Scholar 

  • Brameyer S, Bode HB, Heermann R (2015) Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol 23:521–523

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Dulguerova G, Okon Y et al (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant-Microbe Interact 14:555–558

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Neal AL, van Wees SC et al (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapalain A, Vial L, Laprade N (2013) Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiol Open 2:226–242

    Article  CAS  Google Scholar 

  • Charlton TS, De Nys R, Netting A et al (2000) A novel and sensitive method for the quantification of N-acyl 3-oxohomoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schauder S, Potier N et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Buddrus-Schiemann K, Rothballer M et al (2010a) Detection of quorum sensing molecules in Burkholderia cepacia culture supernatants with enzyme-linked immunosorbent assays. Anal Bioanal Chem 398:2669–2676

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kremmer E, Gouzy MF et al (2010b) Development and characterization of rat monoclonal antibodies for N-acylated homoserine lactones. Anal Bioanal Chem 398:2655–2667

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants. Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Daniels R, De Vos DE, Desair J et al (2002) Quorum sensing in Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    Article  CAS  PubMed  Google Scholar 

  • De Weger LA, Bakker PAHM, Schippers B et al (1989) Pseudomonas spp with mutational changes in the O-antigenic side chain of their lipopolysaccharides are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plant-microbe interactions. Springer, Berlin, pp 197–202

    Chapter  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L et al (1998a) A site specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. PNAS 95:7051–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM et al (1998b) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH, ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 11:763–771

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Gusti AR, Zhang Q et al (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dourado MN, Bogas AC, Pomini AM et al (2013) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 44:1331–1339

    Article  PubMed  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  CAS  PubMed  Google Scholar 

  • Duanis-Assaf D, Steinberg D, Chai Y et al (2016) The luxs based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Front Microbiol 6:1517

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109:1101–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Effmert U, Kalderas J, Warnke R et al (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P et al (2001) Acylhomoserine lactone production is more common among plant associated Pseudomonas spp than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima Q, Zahin M, Khan MSA et al (2010) Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 50:238–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Fekete A, Rothballer M, Frommberger M et al (2007) Identification of bacterial N-acyl homoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem 387:455–467

    Article  CAS  PubMed  Google Scholar 

  • Fekete A, Rothballer M, Hartmann A et al (2010) Identification of bacterial autoinducers. In: Kraemer R, Jung K (eds) Bacterial signaling. Wiley, Germany, pp 95–111

    Google Scholar 

  • Ferluga S, Steindler L, Venturi V (2008) N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 69–90

    Chapter  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA et al (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259

    Article  CAS  PubMed  Google Scholar 

  • Folcher M, Gaillard H, Nguyen LT et al (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306

    Article  CAS  PubMed  Google Scholar 

  • Fray RG (2002) Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frommberger M, Schmitt-Kopplin P, Ping G et al (2004) A simple and robust set-up for on-column sample preconcentration-nano-liquid chromatography-electrospray ionization mass spectrometry for the analysis of N-homoserine lactones. Anal Bioanal Chem 378:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Galloway WR, Hodgkinson JT, Bowden SD et al (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and Al-2 quorum sensing pathways. Chem Rev 111:28–67

    Article  CAS  PubMed  Google Scholar 

  • Gantner S, Schmid M, Durr C et al (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JE, Keshavan ND (2006) Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70:859–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JF, Venturi V (2013) A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–174

    Article  CAS  PubMed  Google Scholar 

  • Götz C, Fekete A, Gebefuegi I et al (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Götz-Rösch C, Sieper T, Fekete A et al (2015) Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci 6:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan LL, Kamino K (2001) Bacterial response to siderophore and quorum sensing chemical signals in the seawater microbial community. BMC Microbiol 1:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA et al (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Reyes C, Schenk ST, Neumann C et al (2014) N-acyl homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol 7:580–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holden MT, Ram Chhabra S, de Nys R et al (1999) Quorum-sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  CAS  PubMed  Google Scholar 

  • Hosni T, Moretti C, Devescovi G et al (2011) Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J 5:1857–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran A, Saadalla MJA, Khan SU et al (2014) Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann Microbiol 64:1797–1806

    Article  CAS  Google Scholar 

  • Jiang J, Wu S, Wang J et al (2015) AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J Basic Microbiol 55:607–616

    Article  CAS  PubMed  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA et al (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL, Walcott RR (2013) Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrulli on watermelon. J Phytopathol 161:562–573

    Article  Google Scholar 

  • Kakkar A, Nizampatnam NR, Kondreddy A (2015) Xanthomonas campestris cell–cell signaling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66:6697–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia VC (ed) (2015) Quorum sensing vs. quorum quenching: a battle with no end in sight. Springer, India

    Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann GF, Sartorio R, Lee SH et al (2006) Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128:2802–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann GF, Park J, Mee JM et al (2008) The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of Pseudomonas aeruginosa quorum sensing signaling molecule N-3-oxo dodecanoylhomoserine lactone. Mol Immunol 45:2710–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A 102:17136–17141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall MM, Sperandio V (2007) Quorum sensing by enteric pathogens. Curr Opin Gastroenterol 23:10–15

    Article  PubMed  Google Scholar 

  • Khan SR, Mavrodi DV, Jog GJ et al (2005) Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OHHexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517–6527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Park SY, Lee JJ et al (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fekete A, Englmann M et al (2006) Development of a solid phase extraction-ultra pressure liquid chromatography method for the determination of N-acyl homoserine lactones from bacterial supernatants. J Chromatogr A 1134:186–193

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jia J, Popat R et al (2011) Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style. BMC Microbiol 11:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Bian Z, Jia Z et al (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum sensing system. Mol Plant-Microbe Interact 25:677–683

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. In: Lichtfouse E (ed) Agroecology and strategies for climate change, sustainable agriculture reviews. Springer, Netherlands, pp 109–133

    Chapter  Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lyon GJ, Novick C (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403

    Article  CAS  PubMed  Google Scholar 

  • Malik AK, Fekete A, Gebefuegi I et al (2009) Single drop microextraction of homoserine lactones based quorum sensing signal molecules, and the separation of their enantiomers using gas chromatography mass spectrometry in the presence of biological matrices. Microchim Acta 166:101–107

    Article  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. PNAS 100:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClean KH, Winson MK, Fish L (1997) Quorum sensing and Chromobacterium violaceum: exploitation of the violacein production and inhibition for the detection of N-acyl homoserine lactonase. Microbiology 143:3703–3711

    Article  CAS  PubMed  Google Scholar 

  • Mcknight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl virulence factor production and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Monnet V, Juillard V, Gardan R (2016) Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol 42:339–351

    CAS  PubMed  Google Scholar 

  • Morin D, Grasland B, Vallee-Rehel K et al (2003) On-line high performance liquid chromatography-mass spectrometry detection and quantification of N-acyl homoserine lactone quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002:79–92

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Kuttler C, Hense BA (2006) Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53:672–702

    Article  PubMed  Google Scholar 

  • Newton JA, Fray RG (2004) Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6:213–224

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Penalver CG, Bertini EV, de Figueroa LIC (2012) Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media. Arch Microbiol 194:615–622

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oslizlo A, Stefanic P, Vatovec S et al (2015) Exploring ComQXPA quorum sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb Biotechnol 8:527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Liu X, Ma Y et al (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268

    Article  CAS  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Jagasia R, Kaufmann GF et al (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK et al (2016) Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 6:37389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181

    Article  CAS  PubMed  Google Scholar 

  • Perez-Montano F, Jimenez-Guerrero I, Sanchez-Matamoros C et al (2013) Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164:749–760

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Montaño F, Jiménez-Guerrero I, Del Cerro P et al (2014) The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by quorum sensing systems and inducing flavonoids via NodD1. PLoS One 9(8):e105901

    Article  PubMed  PubMed Central  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Vukanti RVNR, Sravani A et al (2014) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Natl Acad Sci India Sect B Biol 80:407–413

    Article  Google Scholar 

  • Rumbaugh KP (ed) (2011) Quorum sensing: methods and protocols. Methods in molecular biology. Springer, New York

    Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan RP, An SQ, Allan JH et al (2015) The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11:e1004986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao MS et al (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc B 362:1149–1163

    Article  CAS  Google Scholar 

  • Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Stein E, Kogel KH et al (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90:605–612

    Article  CAS  PubMed  Google Scholar 

  • Schmid N, Pessi G, Deng Y et al (2012) The ahl- and bdsf-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111. PLoS One 7(11):e49966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F et al (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Simons M, van der Bij AJ, de Weger LA (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh HB, Singh A et al (2012) Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology 158:529–538

    Article  CAS  PubMed  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R et al (2001) Visualization of Nacylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suppiger A, Schmid N, Aguilar C (2013) Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4:400–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116

    Article  CAS  PubMed  Google Scholar 

  • Thomson NR, Crow MA, Mcgowan SJ et al (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    Article  CAS  PubMed  Google Scholar 

  • Veliz-Vallejos DF, van Noorden GE, Yuan M et al (2014) A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    Article  CAS  PubMed  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the Rhizosphere. Trends Plant Sci 21:187–198

    Article  CAS  PubMed  Google Scholar 

  • Verma SC, Miyashiro T (2013) Quorum sensing in the squid-vibrio symbiosis. Int J Mol Sci 14:16386–16401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • von Rad U, Klein I, Dobrev PI et al (2008) The response of Arabidopsis thaliana to N -hexanoyl DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    Article  CAS  Google Scholar 

  • Wang LH, He Y, Gao Y et al (2004a) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhong Z, Cai T et al (2004b) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing, cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Câmara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  PubMed  Google Scholar 

  • Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now-gone for lunch! Curr Opin Microbiol 5:216–222

    Article  CAS  PubMed  Google Scholar 

  • Wynendaele E, Bronselaer A, Nielandt J et al (2013) Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 41:D655–D659

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Nihira T (1998) Microbial hormones and microbial chemical ecology. In: Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry. Elsevier Sciences, Amsterdam, pp 377–413

    Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zarkani AA, Stein E, Rohrich CR et al (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Curr Opin Biotechnol 32:136–142

    Article  CAS  PubMed  Google Scholar 

  • Zúñiga A, Poupin MJ, Donoso R (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to the Chairman, Department of Agricultural Microbiology, AMU, Aligarh, India for providing support to complete this task. We are also thankful to Mr. Faizan Abul Qais, research scholar, Department of Agricultural Microbiology, AMU, Aligarh, for his cooperation in preparing Fig. 16.1 of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Altaf, M.M., Khan, M.S.A., Abulreesh, H.H., Ahmad, I. (2017). Quorum Sensing in Plant Growth-Promoting Rhizobacteria and Its Impact on Plant-Microbe Interaction. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_16

Download citation

Publish with us

Policies and ethics