Skip to main content

Interplay Between Microenvironmental Abnormalities and Infectious Agents in Tumorigenesis

  • Chapter
  • First Online:
Infectious Agents Associated Cancers: Epidemiology and Molecular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1018))

Abstract

Emerging evidence has shown that the cell of microenvironmental abnormalities is a key factor that controls many cellular physiological processes including cellular communication, homing, proliferation, and survival. Given its central regulatory role, it is therefore not surprising that it is widely exploited by infectious agents for inducing pathogenesis. In the past decade, a number of oncogenic pathogens including viruses, bacteria, and parasites are demonstrated to take advantage of the tumor microenvironmental factors including hypoxia, oxidative stress, and cytokines, to create an extracellular environment more favorable for pathogen survival and propagation and escape from the host immune surveillance. Here we summarize and highlight the current understanding of the interplay between common tumor microenvironmental factors and oncogenic pathogens in promoting tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eales KL, Hollinshead KE, Tennant DA (2016) Hypoxia and metabolic adaptation of cancer cells. Oncogene 25:50

    Google Scholar 

  2. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  CAS  PubMed  Google Scholar 

  3. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel A, Sant S (2016) Hypoxic tumor microenvironment: opportunities to develop targeted therapies. Biotechnol Adv 34:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLaughlin-Drubin ME, Munger K (2008) Viruses associated with human cancer. Biochim Biophys Acta 3:127–150

    Article  CAS  Google Scholar 

  8. Purushothaman P, Uppal T, Verma SC (2015) Molecular biology of KSHV lytic reactivation. Virus 7:116–153

    Article  CAS  Google Scholar 

  9. Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17:2614–2623

    Article  CAS  PubMed  Google Scholar 

  10. Ratcliffe PJ (2013) Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol 591:2027–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8:851–864

    Article  CAS  PubMed  Google Scholar 

  12. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med 36:1–12

    Article  PubMed  Google Scholar 

  14. Zhu C, Zhu Q, Wang C, Zhang L, Wei F, Cai Q (2016) Hostile takeover: manipulation of HIF-1 signaling in pathogen-associated cancers (review). Int J Oncol 49:1269–1276

    Article  PubMed  Google Scholar 

  15. Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jham BC, Ma T, Hu J, Chaisuparat R, Friedman ER, Pandolfi PP, Schneider A, Sodhi A, Montaner S (2011) Amplification of the angiogenic signal through the activation of the TSC/mTOR/HIF axis by the KSHV vGPCR in Kaposi’s sarcoma. PLoS One 6:0019103

    Article  CAS  Google Scholar 

  17. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Pagano JS (2004) Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha. Mol Cell Biol 24:5223–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu F, Lin B, Liu X, Zhang W, Zhang E, Hu L, Ma Y, Li X, Tang X (2016) ERK signaling pathway is involved in HPV-16 E6 but not E7 Oncoprotein-induced HIF-1alpha protein accumulation in NSCLC cells. Oncol Res 23:109–118

    Article  PubMed  Google Scholar 

  19. Tomita M, Semenza GL, Michiels C, Matsuda T, Uchihara JN, Okudaira T, Tanaka Y, Taira N, Ohshiro K, Mori N (2007) Activation of hypoxia-inducible factor 1 in human T-cell leukaemia virus type 1-infected cell lines and primary adult T-cell leukaemia cells. Biochem J 406:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sung WW, Chu YC, Chen PR, Liao MH, Lee JW (2016) Positive regulation of HIF-1A expression by EBV oncoprotein LMP1 in nasopharyngeal carcinoma cells. Cancer Lett 382:21–31

    Article  CAS  PubMed  Google Scholar 

  21. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  CAS  PubMed  Google Scholar 

  22. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    Article  CAS  PubMed  Google Scholar 

  23. Cai Q, Murakami M, Si H, Robertson ES (2007) A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi’s sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J Virol 81:10413–10423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M, Joab I, Jang KL, Pagano JS (2006) EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 66:9870–9877

    Article  CAS  PubMed  Google Scholar 

  25. Shin YC, Joo CH, Gack MU, Lee HR, Jung JU (2008) Kaposi’s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res 68:1751–1759

    Article  CAS  PubMed  Google Scholar 

  26. Darekar S, Georgiou K, Yurchenko M, Yenamandra SP, Chachami G, Simos G, Klein G, Kashuba E (2012) Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS One 7:27

    Article  CAS  Google Scholar 

  27. Yoo YG, Cho S, Park S, Lee MO (2004) The carboxy-terminus of the hepatitis B virus X protein is necessary and sufficient for the activation of hypoxia-inducible factor-1alpha. FEBS Lett 577:121–126

    Article  CAS  PubMed  Google Scholar 

  28. Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, Lee MO (2008) Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene 27:3405–3413

    Article  CAS  PubMed  Google Scholar 

  29. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoo YG, Oh SH, Park ES, Cho H, Lee N, Park H, Kim DK, Yu DY, Seong JK, Lee MO (2003) Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway. J Biol Chem 278:39076–39084

    Article  CAS  PubMed  Google Scholar 

  31. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60:4873–4880

    CAS  PubMed  Google Scholar 

  32. Bodily JM, Mehta KP, Laimins LA (2011) Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res 71:1187–1195

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Simon MC (2004) Regulation of transcription and translation by hypoxia. Cancer Biol Ther 3:492–497

    Article  CAS  PubMed  Google Scholar 

  34. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442:779–785

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, You M, Guan KL (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282:35803–35813

    Article  CAS  PubMed  Google Scholar 

  38. Connolly E, Braunstein S, Formenti S, Schneider RJ (2006) Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol 26:3955–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Populo H, Lopes JM, Soares P (2012) The mTOR signalling pathway in human cancer. Int J Mol Sci 13:1886–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, Ning T, Basang Z, Zhang C, Ke Y (2004) Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin. J Biol Chem 279:35664–35670

    Article  CAS  PubMed  Google Scholar 

  41. Spangle JM, Munger K (2010) The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 84:9398–9407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yen CJ, Lin YJ, Yen CS, Tsai HW, Tsai TF, Chang KY, Huang WC, Lin PW, Chiang CW, Chang TT (2012) Hepatitis B virus X protein upregulates mTOR signaling through IKKbeta to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS One 7:27

    Google Scholar 

  43. George A, Panda S, Kudmulwar D, Chhatbar SP, Nayak SC, Krishnan HH (2012) Hepatitis C virus NS5A binds to the mRNA cap-binding eukaryotic translation initiation 4F (eIF4F) complex and up-regulates host translation initiation machinery through eIF4E-binding protein 1 inactivation. J Biol Chem 287:5042–5058

    Article  CAS  PubMed  Google Scholar 

  44. Panda S, Vedagiri D, Viveka TS, Harshan KH (2014) A unique phosphorylation-dependent eIF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation. Biochem J 462:291–302

    Article  CAS  PubMed  Google Scholar 

  45. Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 762825:13

    Google Scholar 

  46. Marambio P, Toro B, Sanhueza C, Troncoso R, Parra V, Verdejo H, Garcia L, Quiroga C, Munafo D, Diaz-Elizondo J, Bravo R, Gonzalez MJ, Diaz-Araya G, Pedrozo Z, Chiong M, Colombo MI, Lavandero S (2010) Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta 6:509–518

    Article  CAS  Google Scholar 

  47. Clanton TL (1985) Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol 102:2379–2388

    Article  CAS  Google Scholar 

  48. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  49. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  50. Meek DW (2004) The p53 response to DNA damage. DNA Repair 3:1049–1056

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Ko LJ, Jayaraman L, Prives C (1996) p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 10:2438–2451

    Article  CAS  PubMed  Google Scholar 

  52. Shin YC, Nakamura H, Liang X, Feng P, Chang H, Kowalik TF, Jung JU (2006) Inhibition of the ATM/p53 signal transduction pathway by Kaposi’s sarcoma-associated herpesvirus interferon regulatory factor 1. J Virol 80:2257–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato Y, Shirata N, Kudoh A, Iwahori S, Nakayama S, Murata T, Isomura H, Nishiyama Y, Tsurumi T (2009) Expression of Epstein-Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription. Virology 388:204–211

    Article  CAS  PubMed  Google Scholar 

  54. Nishimura T, Kohara M, Izumi K, Kasama Y, Hirata Y, Huang Y, Shuda M, Mukaidani C, Takano T, Tokunaga Y, Nuriya H, Satoh M, Saito M, Kai C, Tsukiyama-Kohara K (2009) Hepatitis C virus impairs p53 via persistent overexpression of 3beta-hydroxysterol Delta24-reductase. J Biol Chem 284:36442–36452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Friborg J Jr, Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894

    CAS  PubMed  Google Scholar 

  56. Chudasama P, Konrad A, Jochmann R, Lausen B, Holz P, Naschberger E, Neipel F, Britzen-Laurent N, Sturzl M (2015) Structural proteins of Kaposi’s sarcoma-associated herpesvirus antagonize p53-mediated apoptosis. Oncogene 34:639–649

    Article  CAS  PubMed  Google Scholar 

  57. Yi F, Saha A, Murakami M, Kumar P, Knight JS, Cai Q, Choudhuri T, Robertson ES (2009) Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology 388:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cai Q, Guo Y, Xiao B, Banerjee S, Saha A, Lu J, Glisovic T, Robertson ES (2011) Epstein-Barr virus nuclear antigen 3C stabilizes Gemin3 to block p53-mediated apoptosis. PLoS Pathog 7:8

    Google Scholar 

  59. Li L, Li W, Xiao L, Xu J, Chen X, Tang M, Dong Z, Tao Q, Cao Y (2012) Viral oncoprotein LMP1 disrupts p53-induced cell cycle arrest and apoptosis through modulating K63-linked ubiquitination of p53. Cell Cycle 11:2327–2336

    Article  CAS  PubMed  Google Scholar 

  60. Mogensen TH, Paludan SR (2001) Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65:131–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang C, Zhu C, Wei F, Zhang L, Mo X, Feng Y, Xu J, Yuan Z, Robertson E, Cai Q (2015) Constitutive activation of interleukin-13/STAT6 contributes to Kaposi’s sarcoma-associated Herpesvirus-related primary effusion lymphoma cell proliferation and survival. J Virol 89:10416–10426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sin S-H, Dittmer DP (2012) Cytokine homologs of human gammaherpesviruses. J Interf Cytokine Res 32:53–59

    Article  CAS  Google Scholar 

  63. Yokoi T, Miyawaki T, Yachie A, Kato K, Kasahara Y, Taniguchi N (1990) Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology 70:100

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tosato G, Tanner J, Jones K, Revel M, Pike S (1990) Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells. J Virol 64:3033–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cordano P, Lake A, Shield L, Taylor G, Alexander FE, Taylor PR, White J, Jarrett RF (2005) Effect of IL-6 promoter polymorphism on incidence and outcome in Hodgkin’s lymphoma. Br J Haematol 128:493–495

    Article  CAS  PubMed  Google Scholar 

  66. Suthaus J, Adam N, Grötzinger J, Scheller J, Rose-John S (2011) Viral interleukin-6: structure, pathophysiology and strategies of neutralization. Eur J Cell Biol 90:495–504

    Article  CAS  PubMed  Google Scholar 

  67. Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G (1999) Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 94:2871–2879

    CAS  PubMed  Google Scholar 

  68. Aoki Y, Tosato G (1999) Role of vascular endothelial growth factor/vascular permeability factor in the pathogenesis of Kaposi’s sarcoma-associated herpesvirus-infected primary effusion lymphomas. Blood 94:4247–4254

    CAS  PubMed  Google Scholar 

  69. Zhang Y-J, Bonaparte RS, Patel D, Stein DA, Iversen PL (2008) Blockade of viral interleukin-6 expression of Kaposi’s sarcoma–associated herpesvirus. Mol Cancer Ther 7:712–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Drexler H, Meyer C, Gaidano G, Carbone A (1999) Constitutive cytokine production by primary effusion (body cavity-based) lymphoma-derived cell lines. Leukemia 08876924:13

    Google Scholar 

  71. Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS (2002) Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science (New York, NY) 298:1432–1435

    Article  CAS  Google Scholar 

  72. Chen M, Sun F, Han L, Qu Z (2016) Kaposi’s sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling. Oncotarget 7:33363–33373

    Article  PubMed  PubMed Central  Google Scholar 

  73. Walboomer JM, Acos MV, Manos MM, Xavier Bosch F, Kummer JA (1999) Human papillomavirus is a necessary cause of invasive cervical cancer. Worldwide J pathol 189:12–19

    Article  Google Scholar 

  74. Ren C, Cheng X, Lu B, Yang G (2013) Activation of interleukin-6/signal transducer and activator of transcription 3 by human papillomavirus early proteins 6 induces fibroblast senescence to promote cervical tumourigenesis through autocrine and paracrine pathways in tumour microenvironment. Eur J Cancer (Oxford, England : 1990) 49:3889–3899

    Article  CAS  Google Scholar 

  75. Tang Y, Kitisin K, Jogunoori W, Li C, Deng C-X, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling. Proc Natl Acad Sci 105:2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horiuchi S, Yamamoto N, Dewan M, Takahashi Y, Yamashita A, Yoshida T, Nowell MA, Richards PJ, Jones SA, Yamamoto N (2006) Human T-cell leukemia virus type-I tax induces expression of interleukin-6 receptor (IL-6R): shedding of soluble IL-6R and activation of STAT3 signaling. Int J Cancer 119:823–830

    Article  CAS  PubMed  Google Scholar 

  77. Uno K, Kato K, Shimosegawa T (2014) Novel role of toll-like receptors in helicobacter pylori-induced gastric malignancy. World J Gastroenterol 20:5244–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tye H, Jenkins BJ (2013) Tying the knot between cytokine and toll-like receptor signaling in gastrointestinal tract cancers. Cancer Sci 104:1139–1145

    Article  CAS  PubMed  Google Scholar 

  79. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19

    Article  CAS  PubMed  Google Scholar 

  80. Deng J-Y, Sun D, Liu X-Y, Pan Y, Liang H (2010) STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J Gastroenterol 16:5380–5387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tye H, Kennedy CL, Najdovska M, McLeod L, McCormack W, Hughes N, Dev A, Sievert W, Ooi CH, T-o I (2012) STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22:466–478

    Article  CAS  PubMed  Google Scholar 

  82. Fiorentino DF, Bond MW, Mosmann T (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095

    Article  CAS  PubMed  Google Scholar 

  83. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  84. Jochum S, Moosmann A, Lang S, Hammerschmidt W, Zeidler R (2012) The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog 8:e1002704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Waal MR, Haanen J, Spits H, Roncarolo M-G, Te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, De Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174:915–924

    Article  Google Scholar 

  86. Vockerodt M, Haier B, Buttgereit P, Tesch H, Kube D (2001) The Epstein-Barr virus latent membrane protein 1 induces interleukin-10 in Burkitt’s lymphoma cells but not in Hodgkin’s cells involving the p38/SAPK2 pathway. Virology 280:183–198

    Article  CAS  PubMed  Google Scholar 

  87. Mahot S, Sergeant A, Drouet E, Gruffat H (2003) A novel function for the Epstein–Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84:965–974

    Article  CAS  PubMed  Google Scholar 

  88. Samanta M, Iwakiri D, Takada K (2008) Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene 27:4150–4160

    Article  CAS  PubMed  Google Scholar 

  89. Prata TT, Bonin CM, Ferreira AM, Padovani CT, Fernandes CE, Machado AP, Tozetti IA (2015) Local immunosuppression induced by high viral load of human papillomavirus: characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology 146:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Das A, Ellis G, Pallant C, Lopes AR, Khanna P, Peppa D, Chen A, Blair P, Dusheiko G, Gill U (2012) IL-10–producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol 189:3925–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xue H, Lin F, Tan H, Zhu Z-Q, Zhang Z-Y, Zhao L (2016) Overrepresentation of IL-10-expressing B cells suppresses cytotoxic CD4+ T cell activity in HBV-induced hepatocellular carcinoma. PLoS One 11:e0154815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Yasuma K, J-i Y, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, Nakagawa M, Suzuki Y, Matsuoka M (2016) HTLV-1 bZIP factor impairs anti-viral immunity by inducing co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT). PLoS Pathog 12:e1005372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wynn TA (2003) IL-13 effector functions*. Annu Rev Immunol 21:425–456

    Article  CAS  PubMed  Google Scholar 

  94. de Waal MR, Figdor CG, Huijbens R, Mohan-Peterson S, Bennett B, Culpepper J, Dang W, Zurawski G, de Vries JE (1993) Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J Immunol 151:6370–6381

    Google Scholar 

  95. Punnonen J, Aversa G, Cocks BG, McKenzie A, Menon S, Zurawski G, de Waal MR, de Vries JE (1993) Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci 90:3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manna SK, Aggarwal BB (1998) IL-13 suppresses TNF-induced activation of nuclear factor-κB, activation protein-1, and apoptosis. J Immunol 161:2863–2872

    CAS  PubMed  Google Scholar 

  97. Relić B, Guicheux J, Mezin F, Lubberts E, Togninalli D, Garcia I, van den Berg WB, Guerne P-A (2001) IL-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis. J Immunol 166:2775–2782

    Article  PubMed  Google Scholar 

  98. Tsai SC, Lin SJ, Chen PW, Luo WY, Yeh TH, Wang HW, Chen CJ, Tsai CH (2009) EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 114:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Silbermann K, Schneider G, Grassmann R (2008) Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein tax via a dually active promoter element responsive to NF-κB and NFAT. J Gen Virol 89:2788–2798

    Article  CAS  PubMed  Google Scholar 

  100. Wäldele K, Schneider G, Ruckes T, Grassmann R (2004) Interleukin-13 overexpression by tax transactivation: a potential autocrine stimulus in human T-cell leukemia virus-infected lymphocytes. J Virol 78:6081–6090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Chung H-K, Young HA, Goon PK, Heidecker G, Princler GL, Shimozato O, Taylor GP, Bangham CR, Derse D (2003) Activation of interleukin-13 expression in T cells from HTLV-1-infected individuals and in chronically infected cell lines. Blood 102:4130–4136

    Article  CAS  PubMed  Google Scholar 

  102. Bruns HA, Kaplan MH (2006) The role of constitutively active Stat6 in leukemia and lymphoma. Crit Rev Oncol Hematol 57:245–253

    Article  PubMed  Google Scholar 

  103. Cai Q, Verma SC, Choi J-Y, Ma M, Robertson ES (2010) Kaposi’s sarcoma-associated herpesvirus inhibits interleukin-4-mediated STAT6 phosphorylation to regulate apoptosis and maintain latency. J Virol 84:11134–11144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang C, Wei F, Cai Q (2016) Deregulation of IL-4/IL-13-induced STAT6 signaling in viral oncogenesis. Oncol Commun 1:e1131

    Google Scholar 

  105. Lømo J, Blomhoff HK, Jacobsen SE, Krajewski S, Reed JC, Smeland EB (1997) Interleukin-13 in combination with CD40 ligand potently inhibits apoptosis in human B lymphocytes: upregulation of Bcl-xL and Mcl-1. Blood 89:4415–4424

    PubMed  Google Scholar 

  106. Jundi K, Greene CM (2015) Transcription of interleukin-8: how altered regulation can affect cystic fibrosis lung disease. Biomol Ther 5:1386–1398

    CAS  Google Scholar 

  107. Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S (2009) CXCL8/IL-8 and CXCL12/SDF-1α co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer 124:853–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu W, Pan K, Zhang L, Lin D, Miao X, You W (2005) Genetic polymorphisms of interleukin (IL)-1B, IL-1RN, IL-8, IL-10 and tumor necrosis factor α and risk of gastric cancer in a Chinese population. Carcinogenesis 26:631–636

    Article  CAS  PubMed  Google Scholar 

  109. Freund A, Chauveau C, Brouillet J-P, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hsu M, Wu SY, Chang SS, Su IJ, Tsai CH, Lai SJ, Shiau AL, Takada K, Chang Y (2008) Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 82:3679–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li X, Liang D, Lin X, Robertson ES, Lan K (2011) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen reduces interleukin-8 expression in endothelial cells and impairs neutrophil chemotaxis by degrading nuclear p65. J Virol 85:8606–8615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shiau M-Y, Fan L-C, Yang S-C, Tsao C-H, Lee H, Cheng Y-W, Lai L-C, Chang Y-H (2013) Human papillomavirus up-regulates MMP-2 and MMP-9 expression and activity by inducing interleukin-8 in lung adenocarcinomas. PLoS One 8:e54423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Woodworth C, Simpson S (1993) Comparative lymphokine secretion by cultured normal human cervical keratinocytes, papillomavirus-immortalized, and carcinoma cell lines. Am J Pathol 142:1544

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang S-M, McCance D (2002) Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol 76:8710–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Polyak SJ, Khabar KS, Paschal DM, Ezelle HJ, Duverlie G, Barber GN, Levy DE, Mukaida N, Gretch DR (2001) Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J Virol 75:6095–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pollicino T, Bellinghieri L, Restuccia A, Raffa G, Musolino C, Alibrandi A, Teti D, Raimondo G (2013) Hepatitis B virus (HBV) induces the expression of interleukin-8 that in turn reduces HBV sensitivity to interferon-alpha. Virology 444:317–328

    Article  CAS  PubMed  Google Scholar 

  117. Mori N, Murakami S, Oda S, Prager D, Eto S (1995) Production of interleukin 8 in adult T-cell leukemia cells: possible transactivation of the interleukin 8 gene by human T-cell leukemia virus type I tax. Cancer Res 55:3592–3597

    CAS  PubMed  Google Scholar 

  118. Asfaha S, Dubeykovskiy AN, Tomita H, Yang X, Stokes S, Shibata W, Friedman RA, Ariyama H, Dubeykovskaya ZA, Muthupalani S (2013) Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 144:155–166

    Article  CAS  PubMed  Google Scholar 

  119. Beales IL, Calam J (1997) Stimulation of IL-8 production in human gastric epithelial cells byhelicobacter pylori, IL-1β and TNF-α requires tyrosine kinase activity, but not protein kinase C. Cytokine 9:514–520

    Article  CAS  PubMed  Google Scholar 

  120. Kitadai Y, Haruma K, Sumii K, Yamamoto S, Ue T, Yokozaki H, Yasui W, Ohmoto Y, Kajiyama G, Fidler IJ (1998) Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 152:93

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee KE, Khoi PN, Xia Y, Park JS, Joo YE, Kim KK, Choi SY, Jung YD (2013) Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol 19:8192–8202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426

    Article  CAS  PubMed  Google Scholar 

  123. Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shimizu Y, Murata H, Kashii Y, Hirano K, Kunitani H, Higuchi K, Watanabe A (2001) CC-chemokine receptor 6 and its ligand macrophage inflammatory protein 3α might be involved in the amplification of local necroinflammatory response in the liver. Hepatology 34:311–319

    Article  CAS  PubMed  Google Scholar 

  125. Kleeff J, Kusama T, Rossi DL, Ishiwata T, Maruyama H, Friess H, Büchler MW, Zlotnik A, Korc M (1999) Detection and localization of MIP-3α/LARC/exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer 81:650–657

    Article  CAS  PubMed  Google Scholar 

  126. Okudaira T, Yamamoto K, Kawakami H, Uchihara JN, Tomita M, Masuda M, Matsuda T, Sairenji T, Iha H, Jeang KT (2006) Retracted: transactivation of CCL20 gene by Epstein–Barr virus latent membrane protein 1. Br J Haematol 132:293–302

    Article  CAS  PubMed  Google Scholar 

  127. Baumforth KR, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR, Kalk E, Piper K, Lee S, Machado L (2008) Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol 173:195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Satoh T, Wada R, Yajima N, Imaizumi T, Yagihashi S (2014) Tumor microenvironment and RIG-I signaling molecules in Epstein Barr virus-positive and -negative classical Hodgkin lymphoma of the elderly. J Clin Exp Hematopathol: JCEH 54:75–84

    Article  Google Scholar 

  129. Jiang B, Xue M (2015) Correlation of E6 and E7 levels in high-risk HPV16 type cervical lesions with CCL20 and Langerhans cells. Genet Mol Res 14:10473–10481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to apologize to the many researchers who have contributed to this area of research but have not been cited in this review due to space limitations. This work is supported by the National Key Research and Development Program of China (2016YFC1200400) and the National Natural Science Foundation of China (81471930, 81402542, 81672015). FW is a scholar of Pujiang Talents in Shanghai. QC is a scholar of New Century Excellent Talents in University of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wei or Qiliang Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhu, Q., Gu, F., Zhu, C., Wang, Y., Wei, F., Cai, Q. (2017). Interplay Between Microenvironmental Abnormalities and Infectious Agents in Tumorigenesis. In: Cai, Q., Yuan, Z., Lan, K. (eds) Infectious Agents Associated Cancers: Epidemiology and Molecular Biology. Advances in Experimental Medicine and Biology, vol 1018. Springer, Singapore. https://doi.org/10.1007/978-981-10-5765-6_16

Download citation

Publish with us

Policies and ethics