Skip to main content

Development of New Diagnostic Techniques – Machine Learning

  • Chapter
  • First Online:
Substance and Non-substance Addiction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1010))

Abstract

Traditional diagnoses on addiction reply on the patients’ self-reports, which are easy to be dampened by false memory or malingering. Machine learning (ML) is a data-driven procedure that learns algorithms from training data and makes predictions. It is quickly developed and is more and more utilized into clinical applications including diagnoses of addiction. This chapter reviewed the basic concepts and processes of ML. Some studies utilizing ML to classify addicts and non-addicts, separate different types of addiction, and evaluate the effects of treatment are also reviewed. Both advantages and shortcomings of ML in diagnoses of addiction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahn WY, Ramesh D, Moeller FG, Vassileva J (2016) Utility of machine-learning approaches to identify behavioral markers for substance use disorders: impulsivity dimensions as predictors of current cocaine dependence. Front Psychol 7:34

    Google Scholar 

  2. Ahn WY, Vassileva J (2016) Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence. Drug Alcohol Depend 161:247–257

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alavi SS, Ferdosi M, Jannatifard F, Eslami M, Alaghemandan H, Setare M (2012) Behavioral addiction versus substance addiction: correspondence of psychiatric and psychological views. Int J Prev Med 3(4):290–294

    PubMed  PubMed Central  Google Scholar 

  4. Albrecht U, Kirschner NE, Grusser SM (2007) Diagnostic instruments for behavioural addiction: an overview. Psychosoc Med 4:Doc11

    PubMed  PubMed Central  Google Scholar 

  5. Badiani A, Belin D, Epstein D, Calu D, Shaham Y (2011) Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 12(11):685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343(7):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  8. Collins M (2002) Ranking algorithms for named-entity extraction: boosting and the voted perceptron. 40th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference: 489–496

    Google Scholar 

  9. Ding YF, Simonoff JS (2010) An investigation of missing data methods for classification trees applied to binary response data. J Mach Learn Res 11:131–170

    Google Scholar 

  10. Duda M, Ma R, Haber N, Wall DP (2016) Use of machine learning for behavioral distinction of autism and ADHD. Transl Psychiatry 6:e732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ford J, Farid H, Makedon F, Flashman LA, McAllister TW, Megalooikonomou V, Saykin AJ (2003) Patient classification of fMRI activation maps. Med Image Comput Comput-Assist Interv Miccai 2879(Pt 2):58–65

    Google Scholar 

  12. Fowler JS, Volkow ND, Kassed CA, Chang L (2007) Imaging the addicted human brain. Sci Pract Perspect 3(2):4–16

    Article  PubMed  PubMed Central  Google Scholar 

  13. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  14. Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12(11):652–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and predictions, Springer, New York

    Google Scholar 

  16. Iniesta R, Stahl D, McGuffin P (2016) Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med 46(12):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. James G, Witten D, Hastie T, Tibshirani R (2014) An introduction to statistical learning: with applications in R. Springer, New York

    Google Scholar 

  18. Kessler RC, van Loo HM, Wardenaar KJ, Bossarte RM, Brenner LA, Cai T, Ebert DD, Hwang I, Li J, de Jonge P, Nierenberg AA, Petukhova MV, Rosellini AJ, Sampson NA, Schoevers RA, Wilcox MA, Zaslavsky AM (2016) Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol Psychiatry 21:1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li CSR, Morgan PT, Matuskey D, Abdelghany O, Luo X, Chang JLK, Rounsaville BJ, Ding YS, Malison RT (2010) Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proc Natl Acad Sci U S A 107(32):14455–14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liow JS, Rehm K, Strother SC, Anderson JR, Morch N, Hansen LK, Schaper KA, Rottenberg DA (2000) Comparison of voxel- and volume-of-interest-based analyses in FDG PET scans of HIV positive and healthy individuals. J Nucl Med 41(4):612–621

    CAS  PubMed  Google Scholar 

  21. Mitchell TM (1977) Machine learning, McGraw-Hill Science/Engineering/Math, Boston

    Google Scholar 

  22. Morey RA, Gold AL, LaBar KS, Beall SK, Brown VM, Haswell CC, Nasser JD, Wagner HR, McCarthy G, Workgrp MM (2012) Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch Gen Psychiatry 69(11):1169–1178

    Article  PubMed  PubMed Central  Google Scholar 

  23. NIDA (2010) Comorbidity: addiction and other mental illnesses

    Google Scholar 

  24. Pariyadath V, Stein EA, Ross TJ (2014) Machine learning classification of resting state functional connectivity predicts smoking status. Front Hum Neurosci 8:425

    Article  PubMed  PubMed Central  Google Scholar 

  25. Passos IC, Mwangi B, Kapczinski F (2016) Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry 3(1):13–15

    Article  PubMed  Google Scholar 

  26. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Rish I, Bashivan P, Cecchi GA, Goldstei RZ (2016) Evaluating effects of methylphenidate on brain activity in cocaine addiction: a machine-learning approach. Med Imaging 2016-Biomed Appl Mol Struct Funct Imaging 9788

    Google Scholar 

  28. Russell SJ, Norvig P (2010) Artificial Intelligence: a modern approach. Pearson, Boston

    Google Scholar 

  29. Sato JR, Moll J, Green S, Deakin JFW, Thomaz CE, Zahn R (2015) Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Rese-Neuroimaging 233(2):289–291

    Article  Google Scholar 

  30. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  31. Volkow ND, Koob G, Baler R (2015) Biomarkers in substance use disorders. ACS Chem Neurosci 6(4):522–525

    Article  CAS  PubMed  Google Scholar 

  32. Volkow ND, Li TK (2004) Science and society – drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci 5(12):963–970

    Article  CAS  PubMed  Google Scholar 

  33. Weygandt M, Schaefer A, Schienle A, Haynes JD (2012) Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp 33(9):2135–2146

    Article  PubMed  Google Scholar 

  34. Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, Barker GJ, Bokde ALW, Buchel C, Carvalho FM, Conrod PJ, Flor H, Fauth-Buhler M, Frouin V, Gallinat J, Gan G, Gowland P, Heinz A, Ittermann B, Lawrence C, Mann K, Martinot JL, Nees F, Ortiz N, Paillere-Martinot ML, Paus T, Pausova Z, Rietschel M, Robbins TW, Smolka MN, Strohle A, Schumann G, Garavan H, Consortium I (2014) Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512(7513):185. −+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Samaras D, Tomasi D, Volkow N, Goldstein R (2005) Machine learning for clinical diagnosis from functional magnetic resonance Imaging. IEEE Comput Soc Conf Comput Vision Pattern Recog Proc 1:1211–1217

    Google Scholar 

  36. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B-Stat Method 67:301–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, D. (2017). Development of New Diagnostic Techniques – Machine Learning. In: Zhang, X., Shi, J., Tao, R. (eds) Substance and Non-substance Addiction. Advances in Experimental Medicine and Biology, vol 1010. Springer, Singapore. https://doi.org/10.1007/978-981-10-5562-1_10

Download citation

Publish with us

Policies and ethics