Skip to main content

Linking Plant Nutritional Status to Plant-AMF Interactions

  • Chapter
  • First Online:
Plant Microbiome: Stress Response

Abstract

Soils with low fertility due to low availability of nutrients limit agricultural productivity, once crops will not possess the ideal conditions for development. Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature and for their yield and nutritional quality in agriculture. Thus, the use of plant growth-promoting microorganisms that form symbiosis with plant roots is an essential strategy to promote more efficient use of mineral resources in agriculture. Mycorrhizae are symbiotic associations between soil fungi and roots of vascular plants, which provide several benefits to the plant, like absorption and translocation of nutrients, mainly nitrogen and phosphate. The benefits of mycorrhizal symbiosis depend on the interaction between plant fungus and the environmental characteristics, such as availability of phosphorus and carbon supply to the symbiont. Mycorrhizal fungi can also protect plants from several biotic and abiotic stresses such as heavy metal contamination, salt and water stress, and pathogens, and they can influence soil properties like increase soil aggregation and stability. But, to assure the efficiency of these benefits, an adequate management of native fungi is necessary, which can be assured through the adoption of conservation practices related to soil preparation and management and which has been associated to the increased diversity of native mycorrhizal fungi. In these conditions, mycorrhizal fungi can represent an important technology to make agricultural production sustainable, both ecologically and economically, decreasing the costs with mineral fertilizers, irrigation, and pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel A, Lafet HA (2013) Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. J Agric Sci Technol 15:1437–1448

    Google Scholar 

  • Abdel A, Lafet HA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.) Mycorrhiza 21:495–503

    Article  CAS  Google Scholar 

  • Aliasgharzadeh N, Saleh RN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  PubMed  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri R, Nikbakht A, Etemadi N (2015) Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Sci Hortic 197:373–380

    Article  CAS  Google Scholar 

  • Antoun H (2012) Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Eng 46:62–67

    Article  CAS  Google Scholar 

  • Apple ME (2010) Aspects of mycorrhizae in desert plants. In: Ramawat KG (ed) Desert plants. Springer, Berlin, pp 121–134

    Chapter  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought, and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizal and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271

    Chapter  Google Scholar 

  • Bąba W, Błońska A, Kompała-Bąba A, Małkowski Ł, Ziemer B, Sierka E, Nowak T, Woźniak G, Besenyei L (2016) Arbuscular mycorrhizal fungi (AMF) root colonization dynamics of Molinia caerulea (L.) Moench. In grasslands and post-industrial sites. Ecol Eng 95:817–827

    Article  Google Scholar 

  • Baláz M, Vosátka M (2001) A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. Mycorrhiza 11:291–296

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 65–77

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Berbara RLL, De Souza FA, Fonseca HMAC (2006) Fungos Micorrízicos arbusculares: Muito além da nutrição. In: Fernandes MS (ed) Nutrição mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 53–88. [in portuguese]

    Google Scholar 

  • Bethlenfalvay GJ, Lindcnnan RG (1992) Mycorrhizae in sustainable agriculture, Special publication: 54. American Society of Agronomy, Madison

    Google Scholar 

  • Bever JD (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244:281–290

    Article  CAS  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  CAS  PubMed  Google Scholar 

  • Bouffaud M-L, Creamer RE, Stone D, Plassart P, van Tuinen D, Lemanceau P, Wipf D, Redecker D (2016) Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biol Biochem 103:464–470

    Article  CAS  Google Scholar 

  • Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370:419–433

    Article  CAS  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Article  Google Scholar 

  • Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist 165:899–912

    Article  PubMed  CAS  Google Scholar 

  • Caldeira SF, Chaves GM, Zambolim L (1983) Observações de micorriza vesicular-arbuscular em diferentes espécies de plantas. Rev Cer 30:19–24. [in portuguese]

    Google Scholar 

  • Cangahuala-Inocente GC, Da Silva MF, Johnson JM, Anicet Manga A, Van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E (2011) Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonization with two Glomus species. Mycorrhiza 21:473–493

    Article  CAS  PubMed  Google Scholar 

  • Cantarella H (2007) Nitrogênio. In: Novais RF, Alvarez V, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL (eds) Fertilidade do solo, 2nd edn. Sociedada Brasileira de Ciência do Solo, Viçosa, pp 375–470. [in portuguese]

    Google Scholar 

  • Canton GC, Bertolazi AA, Cogo AJD, Eutrópio FJ, Melo J, Souza SB, Krohling CA, Campostrini E, Silva AG, Façanha AR, Sepúlveda N, Cruz C, Ramos AC (2016) Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus Grandis. Mycorrhiza 26:475–487

    Article  CAS  PubMed  Google Scholar 

  • Carrenho R, Trufem SFB, Bononi VLR (2002) Effects of using different host plants on the detected biodiversity of arbuscular mycorrhizal fungi from an agroecosystem. Rev Bras Bot 25:93–101

    Article  Google Scholar 

  • Carvalho DJVM (2015) Functional diversity of native mycorrhizal fungi on wheat protection against the toxicity of Mn. Master thesis. University of Évora, Évora, Portugal

    Google Scholar 

  • Cavagnaro TR, Gao LL, Smith SE, Smith P (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Article  Google Scholar 

  • Colozzi-Filho A, Siqueira JO (1986) Micorrizas vesículoarbuscular em mudas de cafeeiro.1 -Efeitos da Gigaspora Margarita e adubação fosfatada no crescimento e nutrição. Rev Bras Ci Solo 10:119–205. [in portuguese]

    Google Scholar 

  • Costa LN, Paulino VT (1989) Efeito de micorrizas vesiculo-arbusculares sobre o crescimento e absorção de fosforo em Andropogon gayanus cv. Planaltina. Ciên Agron 20:21–24. [in portuguese]

    Google Scholar 

  • Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554

    Article  CAS  Google Scholar 

  • Cobb AB, Wilson GWT, Goad CL, Bean SR, Kaufman RC, Herald TJ, Wilson JD (2016) The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: enhancing sustainability through plant-microbial. Agric Ecosyst Environ 233:432–440

    Article  Google Scholar 

  • Cosette Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, Van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G (2014) The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J Prot 108:354–368

    Article  CAS  Google Scholar 

  • Couto MSR, Lovato PE, Wipf D, Dumas-Gaudot E (2013) Proteomic studies of arbuscular mycorrhizal associations. Adv Biol Chem 3:48–58

    Article  CAS  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Dell Fabbro C, Prati D (2014) Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic Appl Ecol 15:534–542

    Article  Google Scholar 

  • Duff SMG, Moorhead CGB, Lefebvre DD, Plaxton WC (1989) Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90:1275–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer WH, Datnoff LE (2014) Mineral nutrition and suppression of plant disease. Renew Agric Food Syst 4:231–244

    Google Scholar 

  • Elsen A, Gervasio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Ezeta FN, Carvalho PCL (1982) Influência da endomicorriza na absorção de P e K e no crescimento da mandioca. Rev Bras Ci Solo 6:25–28. [in portuguese]

    CAS  Google Scholar 

  • Fernández AB, Siqueira JO, Menezes MAL, Guedes GAA (1987) Efeito diferenciado do fósforo sobre o estabelecimento e efetividade da simbiose endomicorrízica em milho e soja. Rev Bras Ci Solo 11:101–108. [in portuguese]

    Google Scholar 

  • Finlay RD (2004) Mycorrhizal fungi and their multifunctional roles. Mycologist 18:91–96

    Article  Google Scholar 

  • Folli-Pereira MS, Meira-Haddad LS, Rassol N, Otoni WC, Kasuya MCM (2012) Development of mycorrhized vitroplants of Jatropha curcas L. at different rooting stages. Plant Biotech Rep. https://doi.org/10.1007/s11816–012-0232–5

    Google Scholar 

  • Fraùsto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Oxford University Press, Oxford, pp 467–496

    Google Scholar 

  • Gamper H, Peter M, Jansa J, Lüscher A, Hartwig UA, Leuchtmann A (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Glob Chang Biol 10:189–199

    Article  Google Scholar 

  • Gange AC (2001) Species-specific responses of a root-and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611–618

    Article  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337. https://doi.org/10.3389/fpls.2014.00337

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Sánchez M, Palma JM, Ocampo JA, García-Romera I, Aranda E (2014) Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants. J Plant Physiol 171:421–428

    Article  PubMed  CAS  Google Scholar 

  • Gebrekirstos A, Teketay D, Fetene M, Mithloehner R (2006) Adaptation of Wve co-occurring tree and shrub species to water stress and its implication in restoration of degraded lands. For Ecol Manag 229:259–267

    Article  Google Scholar 

  • George E, Häussler KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manage 117:106–114

    Article  Google Scholar 

  • Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Heidari M, Karami V (2014) Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J Saudi Soc Agric Sci 13:9–13

    Google Scholar 

  • Hodge A (2001) Arbuscular Mycorrhizal fungi influence decomposition of but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734

    Article  CAS  Google Scholar 

  • Hodge A (2003) Plant nitrogen capture from organic matter as affected by dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314

    Article  Google Scholar 

  • Howeler RH, Sieverding E, Saif S (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249–283

    Article  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • International culture collection of vesicular arbuscular mycorrhizal fungi – INVAN (2016) http://invam.caf.wvu.edu

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Liu J, Liu J, Huang X (2012) Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Sci China Life Sci 55:474–482

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland PJ (1991) Vesicular arbuscular mycorrhizas respond to corn and soybean cropping history. New Phytol 117:657–663

    Article  Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Article  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Kuyper TW, LeVelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb) grown under well-watered and water stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Klauberg-Filho O (1999) Ecologia e atividade de fungos micorrízicos arbusculares em solo poluído com metais pesados 161p Tese (Doutorado)—Universidade Federal de Lavras. [in portuguese]

    Google Scholar 

  • Kleinschmidt GD, Gerdemann JW (1972) Stunting of citrus seedlings in fumigated nursery soils related to the absence of endomycorrhizae. Phytopathology 64:1447–1453

    Article  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    Article  CAS  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.) New Phytol 117:649–655

    Article  CAS  Google Scholar 

  • Leal PL, Siqueira JO, Stürmer SL (2013) Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Appl Soil Ecol 71:72–80

    Article  Google Scholar 

  • Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – a meta analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Andrillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants – a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Lehninger AL, David LN, Michael MC (1995) Lehninger principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Lekberg Y, Waller LP (2016) What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecol. https://doi.org/10.1016/j.funeco.2016.05.012

  • León DG, Moora M, Öpik M, Jairus T, Neuenkamp L, Vasar M, Bueno G, Gerz M, Davison J, Zobel M (2016) Dispersal of arbuscular mycorrhizal fungi and plants during succession. Acta Oecol 77:128–135

    Article  Google Scholar 

  • Liu A, Hamel C, Elmi A, Costa C, Ma BL, Smith DL (2002) Concentrations of K, Ca and mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–278

    Article  CAS  Google Scholar 

  • Lynch J, Deikman J (1998) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes, vol 19. ASPBR, Rockville

    Google Scholar 

  • Malik RJ, Dixon MH, Bever JD (2016) Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biol Control 103:46–53

    Article  CAS  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P (2000) Transport of N-15 from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

    Article  Google Scholar 

  • Marschner H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crop Res 56:203–207

    Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient-uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • Melloni R, Cardoso EJBN (1999) Quantificação de micélio extrarradicular de fungos micorrízicos arbusculares de plantas cítricas. II. Comparação entre diferentes espécies cítricas e endófitos. Rev Bras Ci Solo 23:59–67. [in portuguese]

    Article  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, Bern. 687p

    Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249

    Article  Google Scholar 

  • Mohanta TK, Bae H (2015) Functional genomics and signaling events in mycorrhizal symbiosis. J Plant Interact 10:21–40

    Article  CAS  Google Scholar 

  • Moreira FMS, Siqueira JO (2002) Microbiologia e Bioquímica do solo. Editora UFLA, Lavras. [in portuguese]

    Google Scholar 

  • Mosse B (1957) Growth and chemical composition of mycorrhizal and nonmycorrhizal apples. Nature 179:922–924

    Article  CAS  Google Scholar 

  • Muthukumar T, Udayan K, Rajeshkannan V (2001) Response of neem (Azadirachta Indica a. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Miyauchi MYH, Lima DS, Nogueira MA, Lovato GM, Murate LS, Cruz MF, Ferreira JM, Zangaro W, Andrade G (2008) Interactions between diazotrophic bacteria and mycorrhizal fungus in maize genotypes. Sci Agric 65:525–531

    Article  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G et al (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  PubMed  Google Scholar 

  • Nair MG, Safir GN, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolodelli G, Senesi GS, Perazzoli ILO, Marangoni BS, Benites VM, Pereira DMBM (2016) Double pulse laser induced breakdown spectroscopy: a potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers. Sci Total Environ 565:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AN, Oliveira LA (2004) Associação micorrízica e teores de nutrientes nas folhas de cupuazeiro (Theobroma grandiflorum) e guaranazeiro (Paullinia cupana) de um sistema agroflorestal de Manaus Amazonas. Rev Bras Ci Solo 28:1063–1068. [in portuguese]

    Article  CAS  Google Scholar 

  • Oliveira NA, Oliveira LA (2005) Colonização por fungos micorrízicos arbusculares e teores de nutrientes em cinco cultivares de bananeiras em um latossolo da amazônia. Rev Bras Ci Solo 29:481–488. [in portuguese]

    Article  Google Scholar 

  • Olsson PA, Hammer EC, Pallon J, Van Aarle IM, Wallander H (2011) Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol 115:643–648

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Hammer EC, Wallander H, Pallon J (2008) Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microbiol 74:4144–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallon J, Wallander H, Hammer E, Arteaga Marrero N, Auzelyte V, Elfman M et al (2007) Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nucl Instrum Methods Phys Res Sect B 260:149–152

    Article  CAS  Google Scholar 

  • Pankaj U, Verma SK, Semwal M, Verma RK (2016) Assessment of natural mycorrhizal colonization and soil fertility status of lemongrass [(Cymbopogon Flexuosus, Nees ex Steud) W. Watson] crop in subtropical India. J Appl Res Med Arom Plants. https://doi.org/10.1016/j.jarmap.2016.10.002

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paula MA, Siqueira JO (1990) Stimulation of hyphal growth of the VA mycorrhizal fungus Gigaspora Margarita by suspension-cultured Pueraria phaseoloides cells and products. New Phytol 115:69–75

    Article  Google Scholar 

  • Paula MA, Siqueira JO, Hoshika E (1990) Crescimento, nutrição e produção de soja inoculada com populações de fungos micorrízicos vesículo-arbusculares. Rev Bras Ci Solo 14:151–156. [in portuguese]

    Google Scholar 

  • Paula MA, Soares CRFS, Siqueira JO (2006) Biomassa, atividade microbiana e fungos micorrízicos arbusculares em solos “landfarming” de resíduos petroquímicos. Rev Bras Eng Agric Amb 10(2):448–455. [in portuguese]

    Article  Google Scholar 

  • Pedersen CT, Sylvia DM (1996) Mycorrhiza: ecological implications for plant interactions. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 195–222

    Chapter  Google Scholar 

  • Pereira EGJO, Siqueira N, Curi FMS, Moreira AAC (1996) Efeitos da micorriza e do suprimento de fósforo na atividade enzimática e na resposta de espécies arbóreas ao nitrogênio. Rev Bras Fis Veg 11:59–65. [in portuguese]

    Google Scholar 

  • Pérez-Tienda J, Valderas A, Camañes G, García-Agustín P, Ferrol N (2012) Kinetics of NH4 + uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 22:485–491

    Article  PubMed  CAS  Google Scholar 

  • Powell CL (1977) Mycorrhizas in hill-country soils I. Spore bearing mycorrhizal fungi in thirty-seven soils. J Agric Res 20:53–57

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Prado RM (2008) Nutrição de plantas. UNESP, Jaboticabal. 407 p. [in portuguese]

    Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and new hypothesis for its function. Pedobiologia 51:123–130

    Article  CAS  Google Scholar 

  • Qiang-Sheng W, Ming-Qin C, Ying-Ning Z, Chu W, Xin-Hua H (2016) Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Sci Hortic-Amsterdam 199:95–102

    Article  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    Article  CAS  PubMed  Google Scholar 

  • Ramos AC, Martins MA, Façanha AR (2005) Atividade ATPásica e pirofosfatásica em microssomos de raízes de milho colonizadas com fungos micorrízicos arbusculares. Rev Bras Ciênc Solo 29:207–213. [in portuguese]

    Article  CAS  Google Scholar 

  • Rasool N (2012) Effect of some alien invasive plant species on soil microbial structure and function. Ph. D thesis, Department of Botany, University of Kkashmir, Srinagar, J & K, India

    Google Scholar 

  • Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP, Lima DS, Goulart T, Bernardi CM, Miyauchi M, Nogueira MA, Andrade G (2007) Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (Glomus clarum) in rice (Oryza sativa). Appl Soil Ecol 35:25–34

    Article  Google Scholar 

  • Reinhardt D (2007) Programming good relations—development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 10:98–105

    Article  PubMed  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    Article  CAS  PubMed  Google Scholar 

  • Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J (2016) Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia 59:179–187

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Berlin, pp 239–256

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ryan MH, Mccully ME, Huang CX (2003) Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytol 160:429–441

    Article  CAS  Google Scholar 

  • Saggin Júnior OJ, Lovato PE (1999) Aplicação de micorrizas arbusculares na produção de mudas e plantas micropropagadas. In: Siqueira JO, Moreira FMS, Lopes SA, Guilherme LR, Faquin V, Fuitinni AE, Carvalho JG (eds) Inter-relação fertilidade, biologia do solo e nutrição de plantas. SBCS, Viçosa, pp 725–773

    Google Scholar 

  • Sano SM (1984) Influência de endomicorrizas nativas do cerrado no crescimento de plantas. Rev Bras Ci Solo 8:25–29. [in portuguese]

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze E, Beck E, Müller-Hohenstein K (2002) Plant ecology. Springer, Berlin, p 702

    Google Scholar 

  • Schweiger PF (2016) Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder. J Plant Physiol 205:84–92

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. C R Biol 327:639–648

    Article  PubMed  Google Scholar 

  • Shi N-N, Gao C, Zheng Y, Guo L-D (2016) Arbuscular mycorrhizal fungus identity and diversity influence subtropical tree competition. Fungal Ecol 20:115–123

    Article  Google Scholar 

  • Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F (2013) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol 197:606–616

    Article  CAS  PubMed  Google Scholar 

  • Silva DKA, Souza RG, Velez BAA, Silva GA, Oehl F, Maia LC (2015) Communities of arbuscular mycorrhizal fungi on a vegetation gradient in tropical coastal dunes. Appl Soil Ecol 96:7–17

    Article  Google Scholar 

  • Silva S, Siqueira JO, Soares CRFS (2006) Fungos micorrízicos no crescimento e extração de metais pesados pela Braquiária em solo contaminado. Pesq Agropec Bras 12:1749–1757. [in portuguese]

    Article  Google Scholar 

  • Smith SE (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162:511–524

    Article  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Stonor MMR, McNeill A, Andrew Smith F (2015) Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus. Appl Soil Ecol 96:68–74

    Article  Google Scholar 

  • Suo Y, Leung DWM (2002) Accumulation of extracellular pathogenesis-related proteins in rose leaves following inoculation of in vitro shoots with Diplocarpon rosae. Sci Hortic 93:167–178

    Article  CAS  Google Scholar 

  • Sylvia DM (1992) Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic, San Diego, pp 53–66

    Google Scholar 

  • Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir G (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 5–25

    Google Scholar 

  • Trindade AV, Salqueiro JLL, Santos TMC (2003) Crescimento e produtividade do mamoeiro a partir de mudas micorrizadas, sob diferentes esquemas de adubação. In: Papaya Brasil: Qualidade do Mamão para o Mercado Interno. Incaper, Vitória. 728 p. [in portuguese]

    Google Scholar 

  • Urcoviche RC, Gazim ZC, Dragunski DC, Barcellos FG, Alberton O (2015) Plant growth and essential oil content of Mentha Crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind Crop Prod 67:103–107

    Article  CAS  Google Scholar 

  • Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E (2005) Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. Plant Mol Biol 59:565–580

    Article  CAS  PubMed  Google Scholar 

  • Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E (2006) A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 6:S145–S155

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172:739–752

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett 7:293–303

    Article  Google Scholar 

  • Vos C, Broucke DVD, Lombi VM, Waele DD, Elsen A (2012) Mycorrhiza-induced resistance in banana acts on nematode host location and penetration. Soil Biol Biochem 10:1–7

    Google Scholar 

  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Yu N, Bano SA, Liu C, Miller AJ, Cousins D, Zhang X, Ratet P, Tadege M, Mysore KS, Downie JA, Murray JD, Oldroyd GED, Schultze M (2014) A H -ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. The Plant Cell 26:1818–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Wang R, Dungait JAJ, Buss HL, Yang S, Zhang Y, Xu Z, Jiang Y (2016) Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.018

  • Wei Y, Su Q, Sun ZJ, Shen YQ, Li JN, Zhu XL, Hou H, Chen ZP, Wu FC (2016) The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Appl Soil Ecol 107:244–250

    Article  Google Scholar 

  • Wu Q-S, Wang S, Srivastava AK (2016) Mycorrhizal hyphal disruption induces changes in plant growth, glomalin-related soil protein and soil aggregation of trifoliate orange in a core system. Soil Tillage Res 160:82–91

    Article  Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H et al (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198:836–852

    Article  CAS  PubMed  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Zachow C, Berg C, Müller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170

    Article  CAS  PubMed  Google Scholar 

  • Zhang F-F, Gao S, Zhao Y-Y, Zhao X-L, Liu X-M, Xiao K (2015) Growth traits and nitrogen assimilation-associated physiological parameters of wheat (Triticum aestivum L.) under low and high N conditions. J Integr Agric 14:1295–1308

    Article  CAS  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang L, Ma F, Zhang X, Fu D (2016) Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields. Ecol Eng 95:64–72

    Article  Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel da Silva Folli-Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertolazi, A.A. et al. (2018). Linking Plant Nutritional Status to Plant-AMF Interactions. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_16

Download citation

Publish with us

Policies and ethics