Skip to main content

The Diversity of Soil Fungus in and Around Termite Mounds of Globitermes sulphureus (Haviland) (Blattodea: Termitidae) and Response of Subterranean Termite to Fungi

  • Chapter
  • First Online:
Sustainable Future for Human Security

Abstract

Many researchers are trying to develop fungus-based biological control methods against insect pests, including termites. This study explored the termiteāˆ’fungus relationship using Globitermes sulphureus (Haviland) as a model species. Fungal species in termite mounds of G. sulphureus were isolated, purified, and identified. These fungal species were then introduced to termites, and their interactions were characterized. The preliminary study found 24 species of fungus from 10 locations in and around the G. sulphureus mound, with the most common being 5 species belonging to Trichoderma sp., Aspergillus spp., and Penicillium spp. We found that termites practice a symbiont relationship with the five species of soil fungi with which they were experimented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanen DK, Vera IR, HdFL H, Mitchell J, ZdB W, Slippers B, Corinne RL, Boomsma JJ (2007) Patterns of interaction specificity of fungus-growing termite and termitomyces symbionts in South Africa. BMC Evol Biol 7:115

    ArticleĀ  Google ScholarĀ 

  • Akkermans ADL, Mirza MS, Harmsen HJM, Blok HJ, Sessitsch A, Akkermans WM (1994) Molecular ecology of microbes: a review of promises, pitfalls and true progress. FEMS Microbiol Rev 15:1850194

    ArticleĀ  Google ScholarĀ 

  • Amburgey TL, Beal RH (1977) White rot inhibits termite attack. Sociobiology 3:35ā€“38

    Google ScholarĀ 

  • Bao LL, Yendol WG (1971) Infection of the eastern subterranean termite, Reticulitermes flavipes (Kollar) with the fungus Beauveria bassiana (Balsamo) Vuill. Entomophaga 16:343ā€“352

    ArticleĀ  Google ScholarĀ 

  • Boucias DG, Stokes C, Storey G, Pendland JC (1996) Effect of imidacloprid on the termite, Reticulitermes flavipes and its interaction with insect pathogens. Pfanzenshutz-Natrichten Bayer 9:103ā€“144

    Google ScholarĀ 

  • Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in soils feeding termite: a review. Eur J Soil Biol 36:117ā€“125

    ArticleĀ  Google ScholarĀ 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147ā€“154

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Buā€™Lock JD (1961) Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol 3:293ā€“342

    ArticleĀ  Google ScholarĀ 

  • Bulmern M, Crozier RH (2004) Duplication and diversifying selection among termite antifungal peptide. Mol Biol Evol 21:2256ā€“2264

    ArticleĀ  Google ScholarĀ 

  • Carter FL, Smythe RV (1973) Effect of sound and Lenzites decayed wood on the amino acid composition of Reticulitermes flavipes. J Insect Physiol 19:1623ā€“1629

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carter FL, Dinus LA, Smythe RV (1972) Effects of wood decayed by Lenzites trabea on the fatty acid composition of the eastern subterranean termite, Reticulitermes flavipes. J Insect Physiol 18:1387ā€“1393

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Celine RA, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6(5):462ā€“469

    ArticleĀ  Google ScholarĀ 

  • Chouvenc T, Su N-Y (2010) Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events ā€“ the limits and potential for biological control. J Econ Entomol 103:1327ā€“1337

    ArticleĀ  Google ScholarĀ 

  • Corinne RL (2000) Chapter 14: Symbiosis with fungi. In: Abe T et al (eds) Termite: Evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289ā€“306

    Google ScholarĀ 

  • Cornelius ML, Daigle DJ, Connick WJ, Tellez M, Williams KS, Lovisa MP (2002) Interaction between Formosan subterranean termites (isopteran: Rhinotermitidae) and wood decay fungi. Proceedings of the 4th international conference on urban pests. pp 319ā€“324

    Google ScholarĀ 

  • Elizabeth Moore Landecker (1996) Fundamentals of the fungi, 4th edn. Prentice-Hall, Englewood Cliffs

    Google ScholarĀ 

  • Esenther GR, Allen TC, Casida JE, Shenefelt RD (1961) Termite attractant from fungus ā€“ infected wood. Science 134(3471):50

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Griffin DM (1972) Ecology of soil fungi. Chapman and Hall, London

    Google ScholarĀ 

  • Guswenrivo I, Nagao H, Lee CY 2011 Analysis of cellulose and nitrogen content of nest materials of a higher termite Globitermes sulphureus (Haviland). In: The 8th Pacific Rim Termite Research Group Conference, Bangkok, Thailand. pp 83ā€“86

    Google ScholarĀ 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycology Research 95:641ā€“655

    ArticleĀ  Google ScholarĀ 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol. Res 105(12):1422ā€“1432

    Google ScholarĀ 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth and Bisbyā€™s dictionary of the fungi. CAB International, Wallingford, p 424

    Google ScholarĀ 

  • Jenkins A (2005) Soil Biology. In: Soil Biology Basic. State of New South Wales. Department of Primary Industries, Richmond

    Google ScholarĀ 

  • Johnson CR, Cullen D, Lamar RT (1994) Manganese peroxidases of the white rot fungus Phanerochaete sordida. Appl Environ Microbiol 60(2):599ā€“605

    Google ScholarĀ 

  • Kramm KR, West DF. Termite pathogens: effects of ingested Metarhizium, Beauveria and Gliocladium conidia on worker termites (Reticulitermes sp.). J Invertebr Pathol. 1982; 40, 7ā€“11

    Google ScholarĀ 

  • Krishna K, Weesner FM. Biology of termites. Academic Press, London. 1970; 346

    Google ScholarĀ 

  • Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffman JA, Bulet P (2001) Insect immunity constitutive expression of a cysteine-rich antifungal and a linear antibacterial bacterial peptide in a termite inset. J Biol Chem 276:4085ā€“4092

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lavelle P, Spain AV. Soil ecology, Kluwer Academic Publishers, London. 2001; 294ā€“316

    Google ScholarĀ 

  • Lee CY, Yap J, Ngee PS, Jaal Z (2003) Foraging colonies of higher mound-building subterranean termite, Globitermes sulphureus (Haviland) in Malaysia. Japanese Journal Environmental Entomology and Zoology 14:105ā€“112

    Google ScholarĀ 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64(3):461ā€“488

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mahmood K, Wei-jun Y, Nazir K, Zahid IR, Abdullah GA (2006) Study of cellulolytic soil fungi and two nova species and new medium. J Zhejiang Univ Sciences 7:459ā€“466

    ArticleĀ  Google ScholarĀ 

  • Matsumura F, Tai A, Coppel HC (1969) Termite trail-following substance, isolation and purification from Reticulitermes virginicus and fungus-infected wood. J Econ Entomol 62:599ā€“603

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Miller SL (1995) Functional diversity in fungi. Can J Bot 73:S50ā€“S57

    ArticleĀ  Google ScholarĀ 

  • Noirot C (1959) Le nid de Globitermes sulphureus (Haviland) au cambodge. Insect Soc 6:259ā€“269

    ArticleĀ  Google ScholarĀ 

  • Noirot C, Darlington Johana PEC. Termite nests: architecture, regulation and defence. In T. Abe et al. Termite: Evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht. 2000; 121ā€“139

    Google ScholarĀ 

  • Onofre SB, Steilmann P, Bertolini J, Rotta D, Francini AS, Kagimura Y, Groff SA, Mazzali L (2011) Amylolytic enzymes produced by the fungus Colletotrichum gloeosporioides in rice semi-solid fermentation. J Yeast Fungal Res 2(3):28ā€“32

    CASĀ  Google ScholarĀ 

  • Reeslev M, KjĆøller A (1995) Comparison of biomass dry weight and radial growth gates of fungal colonies on media solidified with different gelling compounds. Appl Environ Microbiol 61:4236ā€“4239

    CASĀ  Google ScholarĀ 

  • Roonwal ML (1970) Termites of the oriental region. In: Krishna K, Weesner FM (eds) The Biology of Termites, vol II. Academic Press, New York, pp 315ā€“391

    Google ScholarĀ 

  • Rosengaus RB, Guldin MR, Traniello JFA (1998) Inhibitory effect of termite fecal pellets on fungal spore germination. J Chem Ecol 24:1697ā€“1706

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rosengaus RB, Moustakas JE, Calleri DV, JFA T (2003) Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J Insect Sci 3:31ā€“37

    ArticleĀ  Google ScholarĀ 

  • Sands WA (1970) The association of termites and fungi. In: Krishna K, Weesner FM (eds) The Biology of Termites, vol I. Academic Press, New York, pp 495ā€“542

    Google ScholarĀ 

  • Saravanakumar K, Kaviyarasan V (2000) Seasonal distribution of soil fungi and chemical properties of montane wet temperate forest types of Tamil Nad. African J Plant Sci 4:190ā€“196

    Google ScholarĀ 

  • Sekiguchi J, Gaucher GM (1977) Conidiogenesis and secondary metabolism in Penicillium urticae. Appl Environ Microbiol 33:147ā€“158

    CASĀ  Google ScholarĀ 

  • Siderhurst MS, James DM, Blunt TD, Bjostad LB (2005) Antimicrobial activity of norharmane against the entomopathogenic fungus Metarhizium anisopliae (Metsch.) and the caste and phylogenetic distribution of this defense in termites (Insecta: Isoptera). Sociobiology 46:563ā€“577

    Google ScholarĀ 

  • Smythe RV, Carter FL, Bacter CC (1970) Influence of wood decay on feeding and survival of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 64:59ā€“62

    ArticleĀ  Google ScholarĀ 

  • Sugamoto K, Minamide Y, Katsuda Y, Nishimoto K 1990 Abstract of 2nd annual meeting of the Japan society for Environmental Entomology and Zoology

    Google ScholarĀ 

  • Thorne BL, Collins MS, Bjorndal KA (1996) Architecture and nutrient analysis of arboreal carton nests of two Neotropical Nasutitermes species (Isoptera: Termitidae), with notes on embedded nodules. Fla Entomol 79:27ā€“37

    ArticleĀ  Google ScholarĀ 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communitiesā€“a review. J. Ind. Microbiol 17:170ā€“178

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vargo EL, Husseneder C, Grace JK (2003) Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol Ecol 12:2599ā€“2608

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Viaud M, Pasquier A, Brygoo Y (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104(9):1027ā€“1032

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Waller DA (1993) Response by Reticulitermes (Isoptera: Rhinotermitidae) and Cryptocercus punctulatus (Blattaria:Cryptocercidae) to wood infected with the green-stain ascomycete, Chlorociboria aeruginascens aeruginascens. Sociobiology 23:103ā€“108

    Google ScholarĀ 

  • Waller DA, La Fage JP, Gilbertson RL, Blackwell M (1987) Wood-decay fungi associated with subterranean termites (Rhinotermitidae) in Louisiana. Proc Entomol Soc Wash 89:417ā€“424

    Google ScholarĀ 

  • Wong AHH, Cheok KS 2001 Observations of termite-fungus interactions of potential significance to wood biodeterioration and protection. Timber Technology Bulletin 24. Kuala Lumpur

    Google ScholarĀ 

  • Yanagawa A (2011) Fujiwara-Tsujii, N Akino, Yoshimura T, and Shimizu S. Musty odor of entomopathogens enhances disease-prevention behaviors in the termite Coptotermes formosanus. J Invertebr Pathol 108(1):1ā€“6

    ArticleĀ  Google ScholarĀ 

  • Yanagawa A, Shimizu S (2005) Defense strategy of the termite, Coptotermes formosanus Shiraki to entomopathogenic fungi. Jpn J Envir Entomol Zool 16:17ā€“22

    Google ScholarĀ 

  • Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52(1):75ā€“85

    ArticleĀ  Google ScholarĀ 

  • Yanagawa A, Yokohari F, Shimizu S (2009) The role of antennae in removing entomopathogenic fungi from cuticle of the termite, Coptotermes formosanus. J Insect Sci 9

    Google ScholarĀ 

  • Yanagawa A, Yokohari F, Shimizu S (2010) Influence of fungal odor on grooming behavior of the termite, Coptotermes formosanus Shiraki. J Insect Sci 10

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhsan Guswenrivo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Guswenrivo, I., Nagao, H., Lee, C.Y. (2018). The Diversity of Soil Fungus in and Around Termite Mounds of Globitermes sulphureus (Haviland) (Blattodea: Termitidae) and Response of Subterranean Termite to Fungi. In: McLellan, B. (eds) Sustainable Future for Human Security . Springer, Singapore. https://doi.org/10.1007/978-981-10-5430-3_4

Download citation

Publish with us

Policies and ethics