Skip to main content

An Introduction to Antioxidants and Their Roles in Plant Stress Tolerance

  • Chapter
  • First Online:

Abstract

Various abiotic stresses lead to the formation of reactive oxygen species (ROS) in plants which are highly reactive and toxic in plant cell. The ROS comprises both free radical (superoxide radicals, O2 ; hydroxyl radical, OH; perhydroxyl radical, HO2 ; and alkoxy radicals, RO) and non-radical (molecular) forms such as hydrogen peroxide (H2O2) and singlet oxygen (O2). Chloroplasts and mitochondria are the major sites for the generation of O2 . Plant’s abiotic stress tolerance requires a number of physiological and biochemical mechanisms which includes enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaiacol peroxidase, GPOX; and glutathione-S-transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds; alkaloids; flavonoids; carotenoids; non-protein amino acids; and α-tocopherols). Increased environmental stresses imbalance the production of reactive oxygen species and thereby quench the activity of antioxidants and thus resulting in oxidative damage. ROS can cause damage to cell structures, nucleic acids, lipids and proteins. Certain ROS like OH- ions are said to react with all components of DNA and damage the purines and pyrimidines. The increased production of antioxidants thus helps the plant to withstand the environmental stress. This chapter focuses on the description of antioxidant defence system under abiotic stress in plants and its involvement in the removal of reactive oxygen species. Hence various types of antioxidants, their types and role will be discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1O2 :

Singlet oxygen

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

AsA:

Ascorbate

AsA-GSH:

Ascorbate-glutathione

ASH:

Ascorbic acid

ATP:

Adenosine triphosphate

Ca2+:

Calcium ions

Car:

Carotene

Cars:

Carotenoids

CAT:

Catalase

Cd:

Cadmium

Cu/ZnSOD:

Copper/zinc superoxide dismutase

Cys:

Cysteine

DHAR:

Dehydroascorbate reductase

DNA:

Deoxyribonucleic acid

FeSOD:

Iron superoxide dismutase

GB:

Glycine betaine

GDH:

Glutamate dehydrogenase

GPOX:

Guaiacol peroxidase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione-S-transferase

H2O2 :

Hydrogen peroxide

HO2 :

Perhydroxyl radical

LPO:

Lipid peroxidation

LDL:

Low density lipoprotein

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

Mg2+ :

Magnesium ion

mM:

Millimolar

MnSOD:

Manganese superoxide dismutase

NaCl:

Sodium chloride

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NO:

Reactive nitric oxide

O2 :

Superoxide radical

OH:

Hydroxyl radicals

POX:

Peroxidases

Pro:

Proline

PSI:

Photosystem I

PSII:

Photosystem II

ROS:

Reactive oxygen species

SODs:

Superoxide dismutases

References

  • Agarwal S (2007) Increased antioxidant activity in cassia seedlings under UV-B radiation. Biol Plant 51:157–160. doi:10.1007/s10535-007-0030-z

    Article  CAS  Google Scholar 

  • Ahamadi SAK, Ebadi A, Jahanbakhsh S et al (2015) Changes in enzymatic and nonenzymatic antioxidant defense mechanisms of canola seedlings at different drought stress and nitrogen levels. Turkish J Agric For 39:601–612

    Article  Google Scholar 

  • Ahmad P, John R, Sarwat M, Umar S (2008) Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod 2:353–365

    CAS  Google Scholar 

  • Ahmad N, Malagoli M, Wirtz M, Hell R (2016) Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol 16:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Alia P, Sardhi P (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397. doi:10.1016/S0981-9428(03)00035-4

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–211

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121. doi:10.1080/15216540252774694

    CAS  Google Scholar 

  • Borek C (1991) Antioxidants and cancer, science and medicine: the baby-boomer’s guide. New Canaan Connect keats Publ 4:51–61

    Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot ert 430

    Google Scholar 

  • Boveris A, Sies H, Martino E et al (1980) Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J 188:643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briviba K, Klotz LO, Sies H (1997) Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 378:1259–1265

    CAS  PubMed  Google Scholar 

  • Chakraborty K, Singh AL, Kalariya KA et al (2015) Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities. Acta Bot Croat 74:123–142

    CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689. doi:10.1104/pp.105.062000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho U, Seo N (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Cle C, Hill LM, Niggeweg R et al (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156. doi:10.1016/j.phytochem.2008.04.024

    Article  CAS  PubMed  Google Scholar 

  • Collins A (2001) Carotenoids and genomic stability. Mutat Res 475:21–28

    Article  CAS  PubMed  Google Scholar 

  • Corpas F, Barroso J, del Rio L (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Fernandez-Ocana A, Carreras A et al (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994. doi:10.1093/pcp/pcj071

    Article  CAS  PubMed  Google Scholar 

  • Creissen GP, Broadbent P, Kular B et al (1994) Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc R Soc Edinburgh 102B:167–175

    Google Scholar 

  • Cunha JR, Neto MCL, Carvalho FEL et al (2016) Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environ Exp Bot 131:58–67

    Article  CAS  Google Scholar 

  • Dabrowska G, Kata A, Goc A et al (2007) Characteristics of the plant ascorbate. Acta Biol Cracov Ser Bot 49:7–17

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Deisseroth A, Dounce A (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50:319–375

    CAS  PubMed  Google Scholar 

  • Denness L, McKenna JF, Segonzac C et al (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species-and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350. doi:10.1016/j.phytochem.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Santos D, Marques JC, Cacador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback – implications for resilience in climate change. Plant Physiol Biochem PPB 67:178–188. doi:10.1016/j.plaphy.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.) Planta 180:278–284. doi:10.1007/BF00194008

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198. doi:10.1016/S1360-1385(00)01601-0

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH et al (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65. doi:10.1111/j.1399-3054.2006.00624.x

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH et al (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264. doi:10.1007/s00425-006-0417-7

    Article  CAS  PubMed  Google Scholar 

  • Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29:485–493. doi:10.1007/s11738-007-0059-9

    Article  CAS  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. doi:10.3389/fpls.2016.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Feigl G, Lehotai N, Molnár Á et al (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625. doi:10.1093/aob/mcu246

    Article  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25. doi:10.1007/BF00386001

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/tpc.105.033589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Xiao Q, Ding L, et al (2008) Differential responses of lipid peroxidation and antioxidants in Alternanthera philoxeroides and Oryza sativa subjected to drought stress. 56:89. Plant Growth Regul. doi:10.1007/s10725-008-9291-6J

  • Gapińska M, Skłodowska M, Gabara B (2007) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11. doi:10.1007/s11738-007-0072-z

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrient management: morphological. Physiol Biochem Asp Plant Stress:1–23

    Google Scholar 

  • Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Food antioxidants. Springer, pp 1–18

    Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Guo T, Zhang G, Zhou M et al (2004) Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil 258:241–248

    Article  CAS  Google Scholar 

  • Hamada AbdElgawad GZ, Hegab MM, Pandey R, et al (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs

    Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkol K et al (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. ScienceAsia 29:109–113

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    Article  CAS  PubMed  Google Scholar 

  • Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132. doi:10.1016/j.tplants.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007) Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300:137–147

    Article  CAS  Google Scholar 

  • Hurrell RF (2003) Influence of vegetable protein sources on trace element and mineral bioavailability. J Nutr 133:2973S–2977S

    PubMed  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G et al (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Jogeswar G, Pallela R, Jakka NM et al (2006) Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiol Plant 28:465–475

    Article  CAS  Google Scholar 

  • Kayang H (2007) Tribal knowledge on wild edible plants of Meghalaya, Northeast India. Indian J Tradit Knowl 6:177–181

    Google Scholar 

  • Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016a) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016b) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S et al (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203. doi:10.1074/jbc.M806337200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N et al (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  • Kundur R, Reddy PT, Rao MD (2016) Effect of PEG mediated water stress on solute accumulation, relative water content, biomass and antioxidant enzymes in rice. Indian J Agric Res 50:398–405

    Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • León AM, Palma JM, Corpas FJ et al (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820

    Article  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R et al (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  PubMed  CAS  Google Scholar 

  • Luis A (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  CAS  Google Scholar 

  • Madhavi DL, Singhal RS, Kulkarni PR (1995) Technological aspects of food antioxidants. Food Sci Technol York-Marcel Dekker:159–266

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Mohanta YK, Panda S (2013) Methods to study antioxidant properties with special reference to medicinal plants. Int J Pharm North Orissa Univ Baripada-757003 Odisha, India 3:91–97

    Google Scholar 

  • Manach C, Morand C, Crespy V et al (1998) Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett 426:331–336

    Article  CAS  PubMed  Google Scholar 

  • Mathews MC, Summers CB, Felton GW (1997) Ascorbate peroxidase: a novel antioxidant enzyme in insects. Arch Insect Biochem Physiol 34:57–68

    Article  CAS  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206

    Article  CAS  PubMed  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Mittova V, Kiddle G et al (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Ron M (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50:265–276

    Article  CAS  Google Scholar 

  • Mir BA, Mir SA, Khazir J et al (2015) Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.) Dunal. Ind Crop Prod 74:1008–1016

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430

    Article  CAS  Google Scholar 

  • Miyake C, Michihata F, Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol 32:33–43

    CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432. doi:10.1016/S0014-5793(03)01077-9

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot J (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Niyogi KK, Shih C, Chow WS et al (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Oboh G, Rocha JBT (2007) Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur Food Res Technol 225:239–247

    Article  CAS  Google Scholar 

  • Olsen KM, Hehn A, Jugdé H et al (2010) Identification and characterisation of CYP75A31, a new flavonoid 3′5 ′-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biol 10:21. doi:10.1186/1471-2229-10-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  • Panda SK (2001) Oxidative response of green gram seeds under salinity stress. Indian J Plant Physiol 6:438–440

    Google Scholar 

  • Peeters-Joris C, Vandevoorde A-M, Baudhuin P (1975) Subcellular localization of superoxide dismutase in rat liver. Biochem J 150:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekker I, Tel-Or E, Mittler R (2002) Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron-mediated oxidative stress in bean. Plant Mol Biol 49:429–438

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Rigelhof F, MIller E (2001) Antioxidant activity. Medallion Lab Anal Prog 19:1–4

    CAS  Google Scholar 

  • Radotić K, Dučić T, Mutavdžić D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    Article  PubMed  Google Scholar 

  • Rao ASVC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 111–147

    Chapter  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • ROS (1997) Reactive oxygen species (ROS): R&D systems. https://www.rndsystems.com/resources/articles/reactive-oxygen-species-ros

  • Sánchez-Rodríguez E, Romero L, Ruiz JM (2016) Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J Plant Physiol 190:72–78. http://dx.doi.org/10.1016/j.jplph.2015.10.010

    Article  PubMed  CAS  Google Scholar 

  • Sano S, Ueda M, Kitajima S et al (2001) Characterization of ascorbate peroxidases from unicellular red alga Galdieria partita. Plant Cell Physiol 42:433–440

    Article  CAS  PubMed  Google Scholar 

  • Sathishkumar R, Lakshmi PTV, Annamalai A (2010) Comparative analyses of non enzymatic and enzymatic antioxidants of Enicostemma littorale blume. Int J Pharm Bio Sci 1:1–16

    Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Shankar V, Kumar D, Agrawal V (2016) Assessment of antioxidant enzyme activity and mineral nutrients in response to NaCl stress and its amelioration through glutathione in chickpea. Appl Biochem Biotechnol 178:267–284

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot:1–26. doi:10.1155/2012/217037

  • Shigeoka S, Nakano Y, Kitaoka S (1980a) Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem J 186:377–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980b) Purification and some properties of L-ascorbic acid-specific peroxidase in Euglena gracilis Z. Arch Biochem Biophys 201:121–127

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M et al (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568. doi:10.1111/j.1399-3054.1987.tb09240.x

    Article  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Silveira NM, de Oliveira JA, Ribeiro C et al (2015) Nitric oxide attenuates oxidative stress induced by arsenic in lettuce (Lactuca sativa) leaves. Water Air Soil Pollut 226:1–9

    Google Scholar 

  • Šimonovičová M, Tamás L, Huttová J, Mistrík I (2004) Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biol Plant 48:261–266

    Article  Google Scholar 

  • Simova-Stoilova L, Vaseva I, Grigorova B et al (2010) Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem 48:200–206

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Khan NA, Nazar R, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress. Am J Plant Physiol 3:25–32

    Article  CAS  Google Scholar 

  • Skórzyńska-Polit E, Dra M, Krupa Z (2003) The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana. Biol Plant 47:71–78

    Article  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of Anabaena doliolum. World J Microbiol Biotechnol 21:1291–1298

    Article  CAS  Google Scholar 

  • Stevens R, Page D, Gouble B et al (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Shigeoka S, Hirayama O, Mitsunaga T (1992) The presence of enzymes related to glutathione metabolism and oxygen metabolism in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 56:1662–1663

    Article  CAS  Google Scholar 

  • Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (1998) Purification and characterization of ascorbate peroxidase in Chlorella vulgaris. Biochimie 80:295–301

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Yoshimura K, Yoshii M et al (2000) Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch Biochem Biophys 376:82–90

    Article  CAS  PubMed  Google Scholar 

  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Thao NP, Khan MIR, Thu NBA et al (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timofeyev MA, Steinberg CEW (2006) Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats. Comp Biochem Physiol Part B Biochem Mol Biol 145:197–203

    Article  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325–346

    Article  Google Scholar 

  • Tuteja N (2010) In: Hirt H (ed) Cold, salt and drought stress. Plant stress biology: from genomics towards system biology. Wiley-Blackwell, Weinheim, pp 137–159

    Google Scholar 

  • Tyler DD (1975) Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 147:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y et al (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:1–12

    Article  CAS  Google Scholar 

  • Vierstra RD, John TR, Poff KL (1982) Kaempferol 3-o-galactoside, 7-o-rhamnoside is the major green fluorescing compound in the epidermis of Vicia faba. Plant Physiol 69:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villafranca JJ, Yost FJ, Fridovich I (1974) Magnetic resonance studies of manganese (III) and iron (III) superoxide dismutases temperature and frequency dependence of proton relaxation rates of water. J Biol Chem 249:3532–3536

    CAS  PubMed  Google Scholar 

  • Wada N, Kinoshita S, Matsuo M et al (1998) Purification and molecular properties of ascorbate peroxidase from bovine eye. Biochem Biophys Res Commun 242:256–261

    Article  CAS  PubMed  Google Scholar 

  • Wang C-Q, Zhang Y-F, Zhang Y-B (2008a) Scavenger enzyme activities in subcellular fractions of white clover (Trifolium repens L.) under PEG-induced water stress. J Plant Growth Regul 27:387–393

    Article  CAS  Google Scholar 

  • Wang L, Zhou Q, Ding L, Sun Y (2008b) Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater 154:818–825

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Su H, Han L et al (2014) Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. Gene 545:141–148. doi:10.1016/j.gene.2014.04.058

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Werner BL, E’Lise MC, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane K, Mitsuya S, Kawasaki M et al (2009) Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant Prod Sci 12:319–326

    Article  CAS  Google Scholar 

  • Yang Y, Han C, Liu Q et al (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    Article  CAS  Google Scholar 

  • Yin L, Wang S, Eltayeb AE et al (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Zheng J-L, Zhao L-Y, Shen B et al (2016) Effects of salinity on activity and expression of enzymes involved in ionic, osmotic, and antioxidant responses in Eurya emarginata. Acta Physiol Plant 38:1–9

    Article  CAS  Google Scholar 

  • Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plant 50:389–394

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are grateful to the University of Delhi for providing financial support under the DU Innovation Project SVC 103/2012. We also acknowledge Dr. (Mrs.) P. Hemalatha Reddy, Principal, Sri Venkateswara College, for providing the institutional support.

Conflict of Interest

Authors have no confliction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabir H. Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mehla, N., Sindhi, V., Josula, D., Bisht, P., Wani, S.H. (2017). An Introduction to Antioxidants and Their Roles in Plant Stress Tolerance. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_1

Download citation

Publish with us

Policies and ethics