Skip to main content

Electric-Magnetic-Mechanical Coupling in Precision Machines

  • Living reference work entry
  • First Online:
Precision Machines

Part of the book series: Precision Manufacturing ((PRECISION))

  • 204 Accesses

Abstract

In this chapter, the electric-magnetic-mechanical coupling methods and related research progress of precision machine tools are discussed. The electromagnetic machine complex of guideway and spindle and the influence of electromagnetic machine parameters on precision machining equipment are discussed respectively based on the key functional parts of precision machine tools. Then, the electromagnetic coupling, motor coupling, and magnetic machine coupling are analyzed respectively to study the coupling of three technical directions, and the method involves the finite element analysis method and electromagnetic machine test method of electromagnetic machine. Based on a specific machining process example, this chapter discusses the theoretical analysis of the influence of three parameters of electromagnetic machine on precision machining machine tools. Finally, the summary analysis of this chapter needs to study the systematic theoretical system of the coupling of three directions of electromagnetic machine on the accuracy and reliability of machine tools, so as to promote the development of precision or ultra-precision machining equipment and supply machining process basic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AMOSIN® – Measuring Principle (2019) http://www.amo-gmbh.com/en/fundamentals/measuring-principle/

  • Azoum K, Besbes M, Bouillault F (2004) 3D FEM of magnetostriction phenomena using coupled constitutive laws. Int J Appl Electromagn Mech 19(1–4):367–371

    Article  Google Scholar 

  • Brandenburg G, Bruckl S, Dormann J, Heinzl J, Schmidt C (2000) Comparative investigation of rotary and linear motor feed drive systems for high precision machine tools. In 6th international workshop on advanced motion control. Proceedings (Cat. No. 00TH8494). IEEE, pp 384–389

    Google Scholar 

  • Chen D, Fan J, Zhang F (2013) Extraction the unbalance features of spindle system using wavelet transform and power spectral density. Measurement 46(3):1279–1290

    Article  Google Scholar 

  • Chen D, Bian Y, Fan J (2014) Experiments and identification of the unbalance of aerostatic guideways on the micro-scale. Sensors 14(3):4416–4427

    Article  Google Scholar 

  • Chen W, Liang Y, Sun Y, Bai Q, An C (2015) A novel dynamic modeling method for aerostatic spindle based on pressure distribution. J Vib Control 21(16):3339–3347

    Article  MathSciNet  Google Scholar 

  • Chen D, Han J, Huo C, Fan J, Cheng Q (2017) Effect of gas slip on the behavior of the aerostatic guideway. Ind Lubr Tribol. https://doi.org/10.1108/ILT-03-2016-0071

  • Chen D, Han J, Cui X, Fan J (2018a) Identification and evaluation for the dynamic signals caused by pressure fluctuation of aerostatic slider. Ind Lubr Tribol. https://doi.org/10.1108/ILT-11-2016-0271

  • Chen D, Zhang S, Pan R, Fan J (2018b) An identifying method with considering coupling relationship of geometric errors parameters of machine tools. J Manuf Process 36:535–549

    Article  Google Scholar 

  • Clark AE (1980) Magnetostrictive rare earth-Fe2 compounds. Handb Ferromagn Mater 1:531–589

    Google Scholar 

  • DeBra DB (1992) Vibration isolation of precision machine tools and instruments. CIRP Ann 41(2):711–718

    Article  Google Scholar 

  • Denkena B, Dahlmann D, Krueger R (2016) Design and optimisation of an electromagnetic linear guide for ultra-precision high performance cutting. Procedia CIRP 46:147–150

    Article  Google Scholar 

  • Ekinci TO, Mayer JRR, Cloutier GM (2009) Investigation of accuracy of aerostatic guideways. Int J Mach Tools Manuf 49(6):478–487

    Article  Google Scholar 

  • Foremny E, Schenck C, Kuhfuss B (2016) Coupling system for ultra precision machining. J Mech Eng Autom 6(6):301–306

    Google Scholar 

  • Fujimori T, Taniguchi K, Ellis C, Aoyama T, Yamazaki K (2012) A study on error compensation on high precision machine tool system using a 2D laser holographic scale system. J Adv Mech Des Syst Manuf 6(6):999–1014

    Article  Google Scholar 

  • Gannel LV (2019) Determination of stiffness of the Guideways of linear electric drive. Russ Electr Eng 90(7):538–542

    Article  Google Scholar 

  • Guo Y, Mao J, Zhou K (2015) Rate-dependent modeling and H robust control of GMA based on Hammerstein model with Preisach operator. IEEE Trans Control Syst Technol 23(6):2432–2439

    Article  Google Scholar 

  • Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine – ultramill. Part 1: holistic design approach, design considerations and specifications. Int J Adv Manuf Technol 47(9–12):867–877

    Article  Google Scholar 

  • Im H, Yoo HH, Chung J (2011) Dynamic analysis of a BLDC motor with mechanical and electromagnetic interaction due to air gap variation. J Sound Vib 330(8):1680–1691

    Article  Google Scholar 

  • Jones SD, Ulsoy AG (1999) An approach to control input shaping with application to coordinate measuring machines

    Book  Google Scholar 

  • Khanfir H, Bonis M, Revel P (2005a) Improving flatness in ultraprecision machining by attenuating spindle motion errors. Int J Mach Tools Manuf 45(7–8):841–848

    Article  Google Scholar 

  • Khanfir H, Bonis M, Revel P (2005b) Improving waviness in ultra precision turning by optimizing the dynamic behavior of a spindle with magnetic bearings. Int J Mach Tool Manu 45(7–8):841–848

    Article  Google Scholar 

  • Kim CJ, Oh JS, Park CH (2014) Modelling vibration transmission in the mechanical and control system of a precision machine. CIRP Ann 63(1):349–352

    Article  Google Scholar 

  • Lai T, Peng X, Guo M, Tie G, Guan C, Liu J et al (2019) Design and manufacture of high accurate aerostatic guideway with glass material. Int J Precis Eng Manuf. https://doi.org/10.1007/s12541-019-00081-5

  • Lee J, Okwudire CE (2016) Reduction of vibrations of passively-isolated ultra-precision manufacturing machines using mode coupling. Precis Eng 43:164–177

    Article  Google Scholar 

  • Lin YC, Lee HS (2008) Machining characteristics of magnetic force-assisted EDM. Int J Mach Tools Manuf 48(11):1179–1186

    Article  MathSciNet  Google Scholar 

  • Liu C, Hu J, Hu Q (2019) Preview control of hydrostatic Guideway for Ultraprecision CNC machine tools. Iran J Sci Technol Trans Mech Eng 43(1):749–759

    Article  Google Scholar 

  • Lu Z, Wei P, Wang C, Jing J, Tan J, Zhao X (2016) Two-degree-of-freedom displacement measurement system based on double diffraction gratings. Meas Sci Technol 27(7):074012

    Article  Google Scholar 

  • Qiang L, Wu W (2014) Research progress in coupled modeling and analysis technology of CNC machine tools. Aerosp Manuf Technol 460(16):8–11

    Google Scholar 

  • Remy G, Gomand J, Barre PJ, Hautier JP (2006) New current control loop with resonant controllers by using the causal ordering graph- application to machine tools. WSEAS Trans Syst 5(1):233–239

    Google Scholar 

  • Rivin EI (1995) Vibration isolation of precision equipment. Precis Eng 17(1):41–56

    Article  Google Scholar 

  • Rivin EI (2006) Vibration isolation of precision objects. Sound Vib 40(7):12–20

    Google Scholar 

  • Schaarschmidt I, Hackert-Oschätzchen M, Meichsner G, Zinecker M, Schubert A (2019) Implementation of the machine tool-specific current and voltage control characteristics in multiphysics simulation of electrochemical precision machining. Procedia CIRP 82:237–242

    Article  Google Scholar 

  • Song F, Song B (2011) Transient response analysis of planar parallel mechanism and magnetic control motorized spindle coupling system. In: Proceedings of the 30th Chinese control conference, pp 3872–3877. IEEE

    Google Scholar 

  • Song F, Liu H, Song B, Feng H (2010) Dynamic optimization of PID control parameters of complex magnetic suspension electromechanical coupling system. In 2010 8th world congress on intelligent control and automation, pp 3435–3440. IEEE

    Google Scholar 

  • Subrahmanyan PK, Trumper DL (2000) Synthesis of passive vibration isolation mounts for machine tools-a control systems paradigm. In: Proceedings of the 2000 American control conference. ACC (IEEE cat. No. 00CH36334), vol. 4. IEEE, pp 2886–2891

    Google Scholar 

  • Tamiya H, Taniguchi K, Yamazaki K, Aoyama H (2018) Detection principle and verification of non-contact displacement meter with pico-meter resolution. J Adv Mech Des Syst Manufact 12(5):JAMDSM0107-JAMDSM0107

    Google Scholar 

  • Uhlmann E, Mullany B, Biermann D, Rajurkar KP, Hausotte T, Brinksmeier E (2016) Process chains for high-precision components with micro-scale features. CIRP Ann Manuf Technol 65(2):549–572

    Article  Google Scholar 

  • Wu D, Wang B, Luo X, Qiao Z (2015) Design and analysis of aerostatic spindle with high load characteristics for large ultra-precision drum lathe. Proc Inst Mech Eng J Eng Tribol 229(12):1425–1434

    Article  Google Scholar 

  • Wu Q, Sun Y, Chen W, Chen G, Bai Q, Zhang Q (2018) Effect of motor rotor eccentricity on aerostatic spindle vibration in machining processes. Proc Inst Mech Eng C J Mech Eng Sci 232(7):1331–1342

    Article  Google Scholar 

  • Yang X, Lu D, Ma C, Zhang J, Zhao W (2017) Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools. Mech Syst Signal Process 82:68–79

    Article  Google Scholar 

  • Yao H, Li Z, Zhao X, Sun T, Dobrovolskyi G, Li G (2016) Modeling of kinematics errors and alignment method of a swing arm ultra-precision diamond turning machine. Int J Adv Manuf Technol 87(1–4):165–176

    Article  Google Scholar 

  • Yip WS, To S (2018) Sustainable manufacturing of ultra-precision machining of titanium alloys using a magnetic field and its sustainability assessment. Sustain Mater Technol 16:38–46

    Google Scholar 

  • Yu Z, Wang T, Zhou M (2018) Study on the magnetic-machine coupling characteristics of Giant Magnetostrictive actuator based on the free energy hysteresis characteristics. Sensors 18(9):3070

    Article  Google Scholar 

  • Zaouia M, Benamrouche N (2012) Numerical modeling of the coupled electromagnetic and mechanical phenomena of linear stepping motors

    Google Scholar 

  • Zhang Z, Ma Y, Guo Y (2015) A novel nonlinear adaptive filter for modeling of rate-dependent hysteresis in giant magnetostrictive actuators. In: 2015 IEEE international conference on mechatronics and automation (ICMA), pp 670–675. IEEE

    Google Scholar 

  • Zhang Q, Zhao J, Peng Y, Pu H, Yang Y (2020) A novel amplification ratio model of a decoupled XY precision positioning stage combined with elastic beam theory and Castigliano's second theorem considering the exact loading force. Mech Syst Signal Process 136:106473

    Article  Google Scholar 

  • Zhao L, Chen H, Yao Y, Diao G (2016) A new approach to improving the machining precision based on dynamic sensitivity analysis. Int J Mach Tools Manuf 102:9–21

    Article  Google Scholar 

  • Zhong Z, Wu L, Mou C (2019) Measurement principle and structure optimization of two-dimensional time grating displacement sensor. In: Ninth international symposium on precision mechanical measurements, vol 11343. International Society for Optics and Photonics, p 1134329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxu Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ren, D. (2020). Electric-Magnetic-Mechanical Coupling in Precision Machines. In: Yang, S., Jiang, Z. (eds) Precision Machines. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5192-0_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5192-0_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5192-0

  • Online ISBN: 978-981-10-5192-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics