Skip to main content

Applications of Computer-Aided Drug Design

  • Chapter
  • First Online:
Drug Design: Principles and Applications

Abstract

Computer-aided drug design (CADD) now plays an instrumental role in the design and discovery of new therapeutic agents. The general goal of computational drug discovery programs is to accelerate the identification of molecular entities with the desired effect in the human body and to determine the quality, safety, and clinical efficacy of compounds. In this chapter, an overview of computational methods is provided that forms the basis of modern day drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioform 10:579–591

    Article  CAS  Google Scholar 

  2. Rigden DJ, Fernández-Suárez XM, Galperin MY (2016) The 2016 database issue of Nucleic Acids Research and an updated molecular biology database collection. Nucleic Acids Res 44(D1):D1–D6

    Article  CAS  PubMed  Google Scholar 

  3. Brown RD, Hassan M, Waldman M (2000) Combinatorial library design for diversity, cost efficiency, and drug-like character. J Mol Graph Model 18:427–437

    Article  CAS  PubMed  Google Scholar 

  4. Mizuguchi K (2004) Fold recognition for drug discovery. Drug Discov Today: Targets 3:18–23

    Article  CAS  Google Scholar 

  5. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  PubMed  Google Scholar 

  6. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7:1047–1055

    Article  CAS  PubMed  Google Scholar 

  7. Johnson M, Maggiora GM (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  8. Kubinyi H (1999) Chance favors the prepared mind-from serendipity to rational drug design. J Recept Signal Transduct Res 19:15–39

    Article  CAS  PubMed  Google Scholar 

  9. Song CM, Bernardo PH, Chai CL, Tong JC (2009) CLEVER: pipeline for designing in silico chemical libraries. J Mol Graph Model 27:578–583

    Article  CAS  PubMed  Google Scholar 

  10. Weber L (2005) Current status of virtual combinatorial library design. QSAR Comb Sci 24:809–823

    Article  CAS  Google Scholar 

  11. Agrafiotis DK, Lobanov VS, Salemme RF (2002) Combinatorial informatics in the post-genomics era. Nat Rev Drug Discov 1:337–346

    Article  CAS  PubMed  Google Scholar 

  12. Leland BA, Christie JG, Nourse DL et al (1997) Managing the combinatorial explosion. J Chem Inf Comput Sci 37:62–70

    Article  CAS  Google Scholar 

  13. Congreve M, Murray CW, Blundell TL (2005) Structural biology and drug discovery. Drug Discov Today 10:895–907

    Article  CAS  PubMed  Google Scholar 

  14. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rice DW, Eisenberg D (1997) A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. J Mol Biol 267:1026–1038

    Article  CAS  PubMed  Google Scholar 

  16. Conte LL, Ailey B, Hubbard TJP et al (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res 28:257–259

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358:86–89

    Article  CAS  PubMed  Google Scholar 

  18. Miyazawa S, Jernigan RL (1985) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552

    Article  CAS  Google Scholar 

  19. Betancourt MR, Thirumalai D (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 8:361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinf 10:168

    Article  Google Scholar 

  22. Levitt D, Banaszak L (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10:229–234

    Article  CAS  PubMed  Google Scholar 

  23. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15:359–363

    Article  CAS  PubMed  Google Scholar 

  24. Laskowski R (1995) SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J Mol Graph 13:323–330

    Article  CAS  PubMed  Google Scholar 

  25. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brady G, Stouten P (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401

    Article  CAS  PubMed  Google Scholar 

  27. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  28. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166

    Article  CAS  PubMed  Google Scholar 

  29. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37:228–241

    Article  CAS  PubMed  Google Scholar 

  30. Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395

    Article  CAS  PubMed  Google Scholar 

  31. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  32. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235:983–1002

    Article  CAS  PubMed  Google Scholar 

  33. Bottegoni G, Kufareva I, Totrov M, Abagyan R (2009) Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 52:397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Polgár T, Keserü GM (2006) Ensemble docking into flexible active sites. Critical evaluation of FlexE against JNK-3 and beta-secretase. J Chem Inf Model 46:1795–1805

    Article  PubMed  Google Scholar 

  35. Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci 7:938–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morris GM, Goodsel DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  37. Kellenberger E, Rodrigo J, Muller P et al (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242

    Article  CAS  PubMed  Google Scholar 

  38. Fernández-Recio J, Totrov M, Abagyan R (2004) Identification of protein-protein interaction sites from docking energy landscapes. J Mol Biol 335:843–865

    Article  PubMed  Google Scholar 

  39. Liu Q, Kwoh CK, Li J (2013) Binding affinity prediction for protein-ligand complexes based on β contacts and B factor. J Chem Inf Model 53:3076–3085

    Article  CAS  PubMed  Google Scholar 

  40. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256

    Article  PubMed  Google Scholar 

  41. Head RD, Smythe ML, Oprea TI et al (1996) VALIDATE: a new method for the receptor-based prediction of binding affinities of novel ligands. J Am Chem Soc 118:3959–3969

    Article  CAS  Google Scholar 

  42. Muegge I (2000) A knowledge-based scoring function for protein-ligand interactions: probing the reference state. Perspect Drug Discov Des 20:99–114

    Article  CAS  Google Scholar 

  43. Gohkle H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  Google Scholar 

  44. Mooij WT, Verdonk ML (2005) General and targeted statistical potentials for protein-ligand interactions. Proteins 61:272–287

    Article  CAS  PubMed  Google Scholar 

  45. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  46. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  47. Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculation. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  48. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discov Today 2:436–444

    Article  Google Scholar 

  49. Gardiner SJ, Begg EJ (2006) Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 58:521–590

    Article  CAS  PubMed  Google Scholar 

  50. Palm K, Stenberg P, Luthman K et al (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571

    Article  CAS  PubMed  Google Scholar 

  51. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol 44:235–249

    Article  CAS  Google Scholar 

  52. Wenlock MC, Austin RP, Barton P et al (2003) A comparison of physicochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256

    Article  CAS  PubMed  Google Scholar 

  53. Congreve M, Carr R, Murray C et al (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  54. Hou T, Wang J, Zhang W et al (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13:2653–2667

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Chuan Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tong, J.C. (2017). Applications of Computer-Aided Drug Design. In: Grover, A. (eds) Drug Design: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-5187-6_1

Download citation

Publish with us

Policies and ethics