Skip to main content

Disease Burden of Indoor Air Pollution

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Indoor Air Quality

Abstract

The highest environmentally related health benefits can be expected from policies that effectively target environmental exposures having high contributions to the population burden of disease (BoD). Such policies are demonstrated, for example, by the smoking bans in public places that have shown significant population health improvements in many countries. The health impacts of environmental exposures range from mild effects like annoyance to effects on chronic morbidity such as asthma, cardiovascular diseases, cancer, and even premature mortality, challenging the quantitative comparison of alternative policy options.

The environmental burden of disease provides a useful quantitative indicator of environmental health impacts, including chemical pollutants and noise. It allows quantitative comparisons of public health impacts associated with a wide range of environmental risk factors and targeting research and especially risk management to the major issues. This chapter gives an overview of the methods and presents five studies to demonstrate the use of the concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Asikainen A, Carrer P, Kephalopoulos S, de Oliveira FE, Wargocki P, Hänninen O (2016) Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project). Special Issue on “Challenges and Opportunities for Urban Environmental Health and Sustainability”. Environ Health 15(S1):61–72. https://doi.org/10.1186/s12940-016-0101-8

    Article  Google Scholar 

  • Babisch W (2006) Transportation noise and cardiovascular risk: Review and synthesis of epidemiological studies, exposure-response curve and risk estimation. WaBoLu-Hefte; 01/06, Umweltbundesamt, Berlin

    Google Scholar 

  • Boulanger G, Bayeux T, Mandin C, Kirchner S, Vergriette B, Pernelet-Joly V, Kopp P (2017) Socio-economic costs of indoor air pollution: A tentative estimation for some pollutants of health interest in France. Environ Int 104:14–24. https://doi.org/10.1016/j.envint.2017.03.025

    Article  CAS  Google Scholar 

  • Bu ZM, Mmereki D, Wang JH, Dong C (2019) Exposure to commonly-used phthalates and the associated health risks in indoor environment of urban China. Sci Total Environ 658:843–853

    Article  CAS  Google Scholar 

  • Burnett R, Pope C III, Ezzati M, Olives C, Lim S, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson H, Smith K, Balmes J, Bruce N, Kan H, Laden F, Prüss-Ustün A, Turner M, Gapstur S, Diver W, Cohen A (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122(4):397–404

    Article  Google Scholar 

  • Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C III, Apte J, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim S, Kan H, Walker K, Thurston G, Hayes R, Lim C, Turner M, Jerrett M, Krewski D, Gapstur S, Diver W, Ostro B, Goldberg D, Crouse D, Martin R, Peters P, Pinault L, Tjepkem M, Donkelaar A, Villeneuve P, Miller A, Yin P, Zhou M, Wang L, Janssen N, Marra M, Atkinson R, Tsang H, Thach T, Cannon J, Allene R, Hart J, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H, Spadaro J (2018) Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. PNAS. https://doi.org/10.1073/pnas.1803222115

  • Californian EPA (2005) Proposed identification of environmental tobacco smoke as a toxic air contaminant. Sacramento, California, Californian Environmental Protection Agency.

    Google Scholar 

  • Carrer P, de Oliveira FE, Santos H, Hänninen O, Kephalopoulos S, Wargocki P (2018) On the development of health-based ventilation guidelines: principles, approach and proposed framework. Int J Environ Res Public Health 15:1360. http://www.mdpi.com/1660-4601/15/7/1360

    Article  Google Scholar 

  • Catelinois O, Rogel A, Laurier D, Billon S, Hémon D, Verger P, Tirmarche M (2007) Evaluation de l’impact sanitaire de l’exposition domestique au radon en France. Bull Epidemiol Hebd 18-19:155–158

    Google Scholar 

  • Cohen A, Brauer M, Burnett R, Anderson H, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, III C, Shin H, Straif K, Shaddick G, Thomas M, Dingenen R, Donkelaar A, Vos T, Murray C, Forouzanfar M (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

    Article  Google Scholar 

  • Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreutzer M, Lagarde F, Mäkeläinen I, Muirhead C, Obereigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath-Rosario A, Tirmarche M, Tomasek L, Whitley E, Wichmann H-E, Doll R (2005) Radon in homes and lung cancer risk: collaborative analysis of individual data from 13 European casecontrol studies. British Medical Journal 330:223–226. http://www.bmj.com/cgi/reprint/330/7485/223 (accessed 2 July 2009)

  • Diapouli E, Chaloulakou A, Koutrakis P (2013) Estimating the concentration of indoor particles of outdoor origin: A review. J Air Waste Manage Assoc 63:1113–1129

    Article  CAS  Google Scholar 

  • Du ZJ, Mo JH, Zhang YP (2014) Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ Int 73:33–45

    Article  CAS  Google Scholar 

  • ERS (2006) Lifting the Smokescreen, 10 Reasons for a Smoke Free Europe. The Smoke Free Partnership. Brussels, European Respiratory Society. ISBN 1-904097-56-1. https://smokefreepartnership.eu/images/Reports-and-Position-Papers/Lifting_the_smokescreen.pdf. Accessed on January 17th, 2022

  • Etzel RA, Pattishall EN, Haley NJ, Fletcher RH, Henderson FW (1992) Passive smoking and middle ear effusion among children in day care. Pediatrics 90:228–232

    Google Scholar 

  • GBD (2019) Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Disability Weights. Institute for Health Metrics and Evaluation (IHME), Seattle, 2020. http://ghdx.healthdata.org/record/ihme-data/gbd-2019-disability-weights. Accessed 2021-04-30

  • GBD (2021a) Institute of Health Metrics and Evaluation (IHME). http://www.healthdata.org/gbd/2019

  • GBD (2021b) Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Particulate Matter Risk Curves. Institute for Health Metrics and Evaluation (IHME), Seattle. https://doi.org/10.6069/KHWH-2703

  • GBD (2021c) GBD compare. https://vizhub.healthdata.org/gbd-compare. Accessed 27 Apr 2021

  • Guo K, Qian H, Zhao D, Ye J, Zheng X (2020) Indoor exposure levels of bacteria and fungi in residences, schools, and offices in China: a systematic review. Indoor Air 30(6):1147–1165

    Article  CAS  Google Scholar 

  • Hänninen O, Asikainen A (eds.) (2013) Efficient reduction of indoor exposures: Health benefits from optimizing ventilation, filtration and indoor source controls. National Institute for Health and Welfare (THL). Report 2/2013. 92 pages. Helsinki 2013. ISBN 978–952–245-821-6 (printed) ISBN 978–952–245-822-3 (online publication) http://urn.fi/URN:ISBN:978-952-245-822-3. Accessed 2014-11-24

  • Hänninen O, Knol A (eds.) (2011) European perspectives on Environmental Burden of Disease; Estimates for nine stressors in six countries. THL Reports 1/2011, Helsinki, Finland. 86 pp + 2 appendixes. ISBN 978-952-245-413-3. http://www.thl.fi/thl-client/pdfs/b75f6999-e7c4-4550-a939-3bccb19e41c1. Accessed 2011-03-23

  • Hänninen OO, Lebret E, Ilacqua V, Katsouyanni K, Künzli N, Srám RJ, Jantunen MJ (2004) Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos Environ 38(37):6411–6423

    Article  Google Scholar 

  • Hänninen O, Hoek G, Mallone S, Chellini E, Katsouyanni K, Kuenzli N, Gariazzo C, Cattani G, Marconi A, Molnár P, Bellander T, Jantunen M (2011) Seasonal patterns of outdoor PM infiltration into indoor environments: review and meta-analysis of available studies from different climatological zones in Europe. Air Qual Atmos Health 4(3–4):221–233. https://doi.org/10.1007/s11869-010-0076-5. http://www.springerlink.com/content/k26h4563110m373g/fulltext.pdf. Accessed 2011-08-31

    Article  CAS  Google Scholar 

  • Hänninen O, Sorjamaa R, Lipponen P, Cyrys J, Lanki T, Pekkanen J (2013) Aerosol-based modelling of infiltration of ambient PM2.5 and evaluation against population-based measurements in homes in Helsinki, Finland. J Aerosol Sci 66:111–122. https://doi.org/10.1016/j.jaerosci.2013.08.004. http://www.sciencedirect.com/science/article/pii/S0021850213001754

    Article  CAS  Google Scholar 

  • Hänninen O, Knol A, Jantunen M, Lim T-A, Conrad A, Rappolder M, Carrer P, Fanetti A-C, Kim R, Buekers J, Torfs R, Iavarone I, Classen T, Hornberg C, Mekel O, the EBoDE Group (2014) Environmental burden of disease in Europe: estimates for nine stressors in six countries. Environ Health Perspect. https://doi.org/10.1289/ehp.1206154. http://ehp.niehs.nih.gov/1206154/

  • Hollander de A, Melse J, Lebret E, Kramers P (1999) An aggregate public health indicator to represent the impact of multiple environmental exposures. Epidemiology 10(5):606–617

    Article  Google Scholar 

  • Hu Y, Yao MY, Liu YM, Zhao B (2020) Personal exposure to ambient PM2.5, PM10, O-3, NO2, and SO2 for different populations in 31 Chinese provinces. Environ Int 144

    Google Scholar 

  • Huijbregts MAJ, Rombouts LJA, Ragas AMJ, van de Meent D (2005) Human-toxicological effect and damage factors of carcinogenic and non-carcinogenic chemicals for life cycle impact assessment. Integr Environ Assess Manag 1(3):181–244

    Article  CAS  Google Scholar 

  • Hurley F, Hunt A, Cowie H, Holland M, Miller B, Pye S, Watkiss P (2005) Methodology Paper (Volume 2) for Service Contract for carrying out cost-benefit analysis of air quality related issues, in particular in the clean air for Europe (CAFE) programme. AEA Technology Environment, 133 pp. http://ec.europa.eu/environment/archives/air/cafe/pdf/cba_methodology_vol2.pdf (accessed 7 July 2009)

  • Jaakkola MS, Piipari R, et al (2003) Environmental tobacco smoke and adult-onset asthma: a population-based incident case-control study. Am J Public Health 93(12):2055–60

    Google Scholar 

  • Klaassen CD (2008) Toxicology: the basic science of poisons. McGraw-hill, 7 edition, ISBN1601197837, 1310 pp.

    Google Scholar 

  • Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M (2018) The lancet commission on pollution and health. Lancet 391:462–512

    Article  Google Scholar 

  • Langer S, Ramalho O, Derbez M, Ribéron J, Kirchner S, Mandin C (2016) Indoor environmental quality in French dwellings and building characteristics. Atmos Environ 128:82–91. https://doi.org/10.1016/j.atmosenv.2015.12.060

    Article  CAS  Google Scholar 

  • Logue J, Price P, Sherman M, Singer B (2012) A method to estimate the chronic health impact of air pollutants in U.S. residences. Environ Health Perspect 120(2):2016–2222

    Article  Google Scholar 

  • Miedema HME, Vos H (2007) Associations between self-reported sleep disturbance and transport noise based on reanalyses of pooled data from 24 studies. Behavioural Sleep Medicine 5(1):1–20

    Google Scholar 

  • Murray CJL, Lopez AD, (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Harvard School of Public Health on behalf of the World Health Organization and the World Bank. Cambridge

    Google Scholar 

  • Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349(9063):1436–1442

    Article  CAS  Google Scholar 

  • Murray CJL, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, Naghavi M, Salomon JA, Shibuya K, Vos T et al (2012) GBD 2010: design, definitions, and metrics. Lancet 380(9859):2063–2066

    Article  Google Scholar 

  • Murray C, Aravkin A, Zheng P et al (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 17 October 2020. https://doi.org/10.1016/S0140-6736(20)30752-2

  • National Health Commission of China (2002) GB/T 18883, Indoor air quality standard. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=59392CE8FD4422912D711459014EA4A7. Accessed 20 April 2021

  • NRC (1983) Risk assessment in the federal government: managing the process. National Research Council, The National Academies Press, Washington, DC. https://doi.org/10.17226/366. 205 pp.

  • Ostro B (2004) Outdoor air pollution: assessing the environmental burden of disease at national and local levels. Environmental burden of disease series, no 5; World Health Organization, Geneva, Switzerland. Available online: https://www.who.int/quantifying_ehimpacts/publications/ebd5.pdf. Accessed on 15 Jan 2019

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. J Amer Med Assoc 287(1132):1141

    Google Scholar 

  • Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski J (2004) Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004:71–77

    Article  Google Scholar 

  • Prüss-Üstün A, Mathers C, Corvalán C, Woodward A (2003) Environmental burden of disease series 1, introduction and methods. Assessing the environmental burden of disease at national and local levels. World Health Organization, protection of the human environment, Geneva. 71 pp.

    Google Scholar 

  • Prüss-Ustün A, Wolf J, Corvalán C, Bos R, Neira M. 2016. Preventing disease through healthy environments. A global assessment of the burden of disease from environmental risks. World Health Organization, Geneva, Switzerland. 147 pp. ISBN 978 92 4 156519 6

    Google Scholar 

  • Rockhill B, Newman B, Weinberg C (1998) Use and misuse of population attributable fractions. Am J Public Health 88(1):15–19

    Article  CAS  Google Scholar 

  • Rumchev KB, Spickett JT, Bulsara MK, Phillips MR, Stick SM (2002) Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur Respir J 20:403–408

    Google Scholar 

  • Su C, Pan M, Zhang Y et al (2021) Indoor exposure levels of radon in dwellings, schools, and offices in China from 2000 to 2020: a systematic review. Indoor Air 00:1–14. https://doi.org/10.1111/ina.12920

    Article  CAS  Google Scholar 

  • Sun C, Hong S, Cai G, Zhang Y, Kan H, Zhao Z et al (2021) Indoor exposure levels of ammonia in residences, schools, and offices in china from 1980 To 2019: a systematic review. Indoor Air 31(6):1691–1706

    Article  CAS  Google Scholar 

  • US CDC (2021) Healthy places. https://www.cdc.gov/healthyplaces/hia.htm

  • US EPA (1989) Risk assessment guidance for superfund human health evaluation manual. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US Surgeon General (2006) The health consequences of involuntary exposure to tobacco smoke: a report of the Surgeon General

    Google Scholar 

  • Vos T, Lim S, Murray C, et al (2020) Global burden of 369 diseases and injuries, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 17 October 2020. https://doi.org/10.1016/S0140-6736(20)30925-9

  • WHO (2006) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide – global update 2005. World Health Organization, WHO Press, Cham

    Google Scholar 

  • WHO (2010) Guidelines for indoor air quality - selected pollutants. World Health Organization, WHO Press, Cham

    Google Scholar 

  • WHO (2021) Health impact assessment. https://www.who.int/health-topics/health-impact-assessment

  • Wilson WE, Mage DT, Grant LD (2000) Estimating separately personal exposure to ambient and nonambient particulate matter for epidemiology and risk assessment: why and how. J Air Waste Manage Assoc 50:1167–1183

    Article  CAS  Google Scholar 

  • Xiang JB, Weschler CJ, Wang QQ, Zhang L, Mo JH, Ma R, Zhang JF, Zhang YP (2019) Reducing indoor levels of "outdoor PM2.5" in urban China: impact on mortalities. Environ Sci Technol 53(6):3119–3127

    Article  CAS  Google Scholar 

  • Xiong K, Rumrich I, Kukec A, Rejc T, Pasetto R, Iavarone I, Hänninen O (2018) Methods of health risk and impact assessment at industrially contaminated sites: systematic review. Epidemiologia & Prevenzione 42(5–6) S1:49–58. http://www.epiprev.it/environmental-health-challenges-from-industrial-contamination_art4 (special issue online http://www.epiprev.it/pubblicazione/epidemiol-prev-2018-42-5-6-suppl-1). http://urn.fi/URN:NBN:fi-fe2019111337830

  • Zhang A, Liu Y, Zhao B, Zhang Y, Zheng X (2021) Indoor pm2.5 concentrations in China: a concise review of the literature published in the past 40 years. Build Environ 198(4):107898

    Article  Google Scholar 

Download references

Acknowledgments

This text is based, among other cited sources, on work and materials produced in the EBoDE project (by intramural funding by the participating institutes); HEALTHVENT project (by EU Health Programme Grant Nr. 2009 12 08,). Indoor exposure dependency on aerosol sizes was developed in TRANSPHORM (by EU FP7) and PMSIZEX (by Academy of Finland). Parallel work on health risk assessment was supported by the COST Action IS1408. Collaborators in these projects are warmly thanked for their intellectual contributions. The French study was supported by the French Agency for Food, Environmental and Occupational Health and Safety (Anses; Grant n°CRD-2011-11) and the French Indoor Air Quality Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Hänninen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hänninen, O., Mandin, C., Liu, W., Liu, N., Zhao, Z., Zhang, Y. (2022). Disease Burden of Indoor Air Pollution. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_48-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_48-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Disease Burden of Indoor Air Pollution
    Published:
    27 August 2022

    DOI: https://doi.org/10.1007/978-981-10-5155-5_48-2

  2. Original

    Disease Burden of Indoor Air Pollution
    Published:
    13 July 2022

    DOI: https://doi.org/10.1007/978-981-10-5155-5_48-1