Skip to main content

A Case Study of Focal Bayesian EEG Inversion for Whitney Element Source Spaces: Mesh-Based vs. Cartesian Orientations

  • Conference paper
  • First Online:
  • 94 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 65))

Abstract

This paper concentrates on the Bayesian detection of the neuronal current distributions in the electroencephalography (EEG) imaging of the brain activity. In particular, we focus on a hierarchical maximum a posteriori inversion technique applicable when the lead field matrix is constructed via the finite element method. We utilize the linear Whitney (Raviart-Thomas) basis functions as source currents. In the numerical experiments, the accuracy was investigated using two spherical head models. The results obtained suggest that the interpolation of the dipolar source space does not necessarily bring any advantage for FEM based inverse computations. Furthermore, the divergence conforming Whitney-type sources were found to be sufficient for precise and highly focal Bayesian modeling of dipole-like currents.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Hagan Anthony, Forster Jonathan J. Kendall’s advanced theory of statistics, volume 2B: Bayesian inference;2. Arnold 2004.

    Google Scholar 

  2. Pursiainen S, Vorwerk J, Wolters C H. Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation Physics in Medicine and Biology. 2016;61:8502–8520.

    Google Scholar 

  3. Munck J.C., Wolters C. H., Clerc M.. EEG & MEG forward modeling. in Handbook of Neural Activity Measurement (Brette R., Destexhe A.. , eds.)Cambridge University Press, New York 2012.

    Google Scholar 

  4. Braess D. Finite Elements. Cambridge: Cambridge University Press 2001.

    Google Scholar 

  5. Vorwerk J, Cho J H, Rampp S, Hamer H, Knösche T R, Wolters C H. A guideline for head volume conductor modeling in EEG and MEG NeuroImage. 2014;100:590–607.

    Google Scholar 

  6. Hallez H., Vanrumste B., Van Hese P., Delputte S., Lemahieu I.. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis. Phys. Med. Biol.. 2008;53:1877–1894.

    Google Scholar 

  7. Ainsworth M, Coyle J. Hierarchic finite elements for unstructured tetrahedral meshes Int. J. Numer. Meth. Engng. 2003;58:2103–2130.

    Google Scholar 

  8. Bauer M, Pursiainen S, Vorwerk Johannes, Köstler Harald, Wolters C H. Comparison Study for Whitney (Raviart-Thomas) Type Source Models in Finite Element Method Based EEG Forward Modeling IEEE Transactions on Biomedical Engineering. 2015. Accepted for publication.

    Google Scholar 

  9. Calvetti Daniela, Somersalo Erkki. An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing;2. Springer Science & Business Media 2007.

    Google Scholar 

  10. Calvetti D, Hakula H, Pursiainen S, Somersalo E. Conditionally Gaussian Hypermodels for Cerebral Source Localization SIAM J. Imaging Sci.. 2009;2:879–909.

    Google Scholar 

  11. Lucka Felix, Pursiainen Sampsa, Burger Martin, Wolters Carsten H.. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents NeuroImage. 2012;61:1364–1382.

    Google Scholar 

  12. Evans L.C.. Partial Differential Equations. Graduate studies in mathematicsAmerican Mathematical Society 1998.

    Google Scholar 

  13. Uutela K., Hämäläinen M., Somersalo E.. Visualization of Magnetoencephalographic Data Using Minimum Current Estimates NeuroImage. 1999;10:173–180.

    Google Scholar 

  14. Ary James P, Klein Stanley A, Fender Derek H. Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses IEEE Transactions on Biomedical Engineering. 1981:447–452.

    Google Scholar 

  15. Stok C J. The influence of model parameters on EEG/MEG single dipole source estimation IEEE Trans. Biomed. Eng. 1987;34:289–296.

    Google Scholar 

  16. Zhang Z. A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres Phys. Med. Biol. 1995;40:335–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Miinalainen, T., Pursiainen, S. (2018). A Case Study of Focal Bayesian EEG Inversion for Whitney Element Source Spaces: Mesh-Based vs. Cartesian Orientations. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds) EMBEC & NBC 2017. EMBEC NBC 2017 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_266

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5122-7_266

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5121-0

  • Online ISBN: 978-981-10-5122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics