Skip to main content

Biomedical Applications of Functional Micro-/Nanoimaging Probes

  • Chapter
  • First Online:
Advances in Functional Micro-/Nanoimaging Probes

Abstract

As traditional molecular imaging modalities, the nature and physical fundamentals of MRI, US, OI, radionuclide-based PET/SPECT imaging, X-ray, and CT are elucidated in this chapter. The philosophy for the design, fabrication, and application of representative imaging probes are also described. Meanwhile, advanced imaging modalities and hybrid imaging probes for both clinical and basic study uses are also introduced to present a clear understanding to a broad and interdisciplinary readership especially at the frontiers of molecular imaging research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, M.A., Semelka, R.C.: MRI: Basic Principles and Applications. Wiley (2011)

    Google Scholar 

  2. Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Nat. Acad. Sci. USA 89, 5951 (1992)

    Article  CAS  Google Scholar 

  3. Devuyst, G., Bogousslavsky, J., Ruchat, P., Jeanrenaud, X., Despland, P.A., Regli, F.: Prognosis after stroke followed by surgical closure of patent foramen ovale: a prospective follow-up study with brain MRI and simultaneous transesophageal and transcranial doppler ultrasound. Neurology 47, 1162–1166 (1996)

    Article  CAS  Google Scholar 

  4. Tang, H., Wu, E.X., Ma, Q.Y., Gallagher, D., Perera, G.M., Zhuang, T.: MRI brain image segmentation by multi-resolution edge detection and region selection. Comput. Med. Imaging Graph. 24, 349 (2000)

    Article  CAS  Google Scholar 

  5. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33, 115–126 (2006)

    Article  Google Scholar 

  6. Osman, N.F., Mcveigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE T. Med. Imaging 19, 186–202 (2000)

    Article  CAS  Google Scholar 

  7. Larson, A.C., White, R.D., Laub, G., Mcveigh, E.R., Li, D., Simonetti, O.P.: Self-gated cardiac cine MRI. Magn. Reson. Med. 51, 93 (2004)

    Article  Google Scholar 

  8. Otazo, R., Kim, D.L., Sodickson, D.K.: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn. Reson. Med. 64, 767–776 (2010)

    Article  Google Scholar 

  9. Haacke, E.M., Masaryk, T.J., Wielopolski, P.A., Zypman, F.R., Tkach, J.A., Amartur, S.: Optimizing blood vessel contrast in fast three dimensional MRI. Magn. Reson. Med. 14, 202–221 (1990)

    Article  CAS  Google Scholar 

  10. Stalder, A.F., Russe, M.F., Frydrychowicz, A., Bock, J., Hennig, J., Markl, M.: Quantitative 2d and 3d phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60, 1218 (2008)

    Article  CAS  Google Scholar 

  11. Degani, H., Gusis, V., Weinstein, D., Fields, S., Strano, S.: Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat. Med. 3, 780–782 (1997)

    Article  CAS  Google Scholar 

  12. Lewin, J.S., Connell, C.F., Duerk, J.L., Chung, Y.C., Clampitt, M.E., Spisak, J.: Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors: clinical trial for evaluation of safety and feasibility. J. Magn. Reson. Imaging 8, 40 (1998)

    Article  CAS  Google Scholar 

  13. Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C.: Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat. Med. 4, 623–626 (1998)

    Article  CAS  Google Scholar 

  14. Gillies, R.J., Natarajan, R., Karczmar, G.S., Bhujwalla, Z.M.: MRI of the tumor microenvironment. J. Magn. Reson. Imaging 16, 430 (2002)

    Article  Google Scholar 

  15. Barrett, T., Brechbiel, M., Bernardo, M., Choyke, P.L.: MRI of tumor angiogenesis. J. Magn. Reson. Imaging 26, 235–249 (2007)

    Article  Google Scholar 

  16. Gadian, D.G.: NMR and its Applications to Living Systems. Oxford University Press (1995)

    Google Scholar 

  17. Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press (1991)

    Google Scholar 

  18. Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface 2, 133 (2005)

    Article  CAS  Google Scholar 

  19. Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B.: Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 41, 1 (2016)

    Article  CAS  Google Scholar 

  20. Boesch, C.: Molecular aspects of magnetic resonance imaging and spectroscopy. Mol. Aspects Med. 20, 185–318 (1999)

    Article  CAS  Google Scholar 

  21. Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30, 120–129 (1959)

    Article  Google Scholar 

  22. Kemshead, J.T., Ugelstad, J.: Magnetic separation techniques: their application to medicine. Mol. Cell. Biochem. 67, 11–18 (1985)

    CAS  Google Scholar 

  23. Bulte, J.W., Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004)

    Article  CAS  Google Scholar 

  24. Massart, R., Cabuil, V.: Effect of some parameters on the formation of colloidal magnetite in alkaline medium-yield and particle-size control. J. Chem. Phys. 84, 967–973 (1987)

    CAS  Google Scholar 

  25. Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Article  CAS  Google Scholar 

  26. Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., Couvreur, P.: Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem. 16, 1181–1188 (2005)

    Article  CAS  Google Scholar 

  27. Kohler, N., Fryxell, G.E., Zhang, M.: A biofunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J. Am. Chem. Soc. 126, 7206–7211 (2004)

    Article  CAS  Google Scholar 

  28. Kim, D.K., Toprak, M., Mikhailova, M., Zhang, Y., Bjelke, B., Kehr, J., Muhammed, M.: Surface modification of superparamagnetic nanoparticles for in-vivo bio-medical applications. Mat. Res. Soc. Symp. Proc 704, W11.2.1-6 (2002)

    Google Scholar 

  29. Zhou, J., Leuschner, C., Kumar, C., Hormones, J.F., Soboyejo, W.O.: Subecellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27, 2001–2008 (2006)

    Article  CAS  Google Scholar 

  30. Jin, R., Lin, B., Li, D., Ai, H.: Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharm. 18, 18–27 (2014)

    Article  CAS  Google Scholar 

  31. Gupta, A.K., Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE T. Nanobiosci. 3, 66–73 (2004)

    Article  Google Scholar 

  32. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  CAS  Google Scholar 

  33. Weissleder, R., Bogdanov, A., Neuwelt, E.A.: Long-circulating iron oxides for MR imaging. Adv. Drug Deliv. Rev. 16, 321–334 (1995)

    Article  CAS  Google Scholar 

  34. Corot, C., Robert, P., Idee, J.M.: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)

    Article  CAS  Google Scholar 

  35. Anzai, Y., Piccoli, C.W., Outwater, E.K.: Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 228, 777–788 (2003)

    Article  Google Scholar 

  36. Weissleder, R., Stark, D.D., Engelstad, B.L.: Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol. 152, 167–173 (1989)

    Article  CAS  Google Scholar 

  37. Wagner, S., Schnorr, J., Pilgrimm, H., Hamm, B., Taupitz, M.: Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest. Radiol. 37, 167–177 (2002)

    Article  CAS  Google Scholar 

  38. Chapon, C., Franconi, F., Lacoeuilie, F., Hindre, F., Saulnier, P., Benoit, J.P., Le Jeune, J.J., Lemaire, L.: Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent. MAGMA 22, 167–174 (2009)

    Article  CAS  Google Scholar 

  39. Michalska, M., Machtoub, L., Manthey, H.D., Bauer, E., Herold, V., Krohne, G., Lykowsky, G., Hildenbrand, M., Kampf, T., Jakob, P., Zernecke, A., Bauer, W.R.: Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler. Thromb. Vasc. Biol. 32, 2350–2357 (2012)

    Article  CAS  Google Scholar 

  40. Shamsipour, F., Zarnani, A.H., Zarnani, A.H., Ghods, R., Chamankhah, M., Forouzesh, F., Vafaei, S., Bayat, A.A., Akhondi, M.M., Ali Oghabian, M., Jeddi-Tehrani, M.: Conjugation of monoclonal antibodies to super paramagnetic iron oxide nanoparticles for detection of HER2/neu antigen on breast cancer cell lines. Avicenna. J. Med. Biotechnol. 1, 27–31 (2009)

    CAS  Google Scholar 

  41. Meier, R., Henning, T.D., Boddington, S., Arora, S., Piontek, G., Rudelius, M., Corot, C., Daldrup-Link, H.E.: Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology 255, 527–535 (2010)

    Article  Google Scholar 

  42. Araki, T.: SPIO-MRI in the detection of hepatocellular carcinoma. J. Gastroenterol. 35, 874–876 (2000)

    Article  CAS  Google Scholar 

  43. Lucidarme, O., Baleston, F., Cadi, M., Bellin, M.F., Charlotte, F., Ratziu, V., Grenier, P.A.: Non-invasive detection of liver fibrosis: is superparamagnetic iron oxide particle-enhanced MR imaging a contributive technique? Eur. Radiol. 13, 467–474 (2003)

    Article  Google Scholar 

  44. Anzai, Y., Prince, M.R.: Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J. Magn. Reson. Imaging 7, 75–81 (1997)

    Article  CAS  Google Scholar 

  45. American national standard: acoustical terminology. American National Standard Institute, Acoustical Society of America, New York (1994)

    Google Scholar 

  46. Mitragotri, S.: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005)

    Article  CAS  Google Scholar 

  47. Agrawal, P., Strijkers, G.J., Nicolay, K.: Chitosan-based systems for molecular imaging. Adv. Drug Deliv. Rev. 62, 42–58 (2010)

    Article  CAS  Google Scholar 

  48. Paefgen, V., Doleschel, D., Kiessling, F.: Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front. Pharm. 6, 197 (2015)

    Article  CAS  Google Scholar 

  49. Cootney, R.W.: Ultrasound imaging: principles and applications in rodent research. ILAR J. 42, 233 (2001)

    Article  Google Scholar 

  50. Pearlman, A.S., Stevenson, J.G., Baker, D.W.: Doppler echocardiography: applications, limitations and future directions. Am. J. Cardiol. 46, 1256–1262 (1980)

    Article  CAS  Google Scholar 

  51. Izadifar, Z., Babyn, P., Chapman, D.: Mechanical and biological effects of ultrasound: A review of present knowledge. Ultrasound Med. Biol. 43, 1085–1104 (2017)

    Article  Google Scholar 

  52. Ter Haar, G.: Therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol. 93, 111–129 (2007)

    Article  Google Scholar 

  53. Miller, M.W., Miller, D.L., Brayman, A.A.: A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 22, 1131–1154 (1996)

    Article  CAS  Google Scholar 

  54. Gourevich, D., Volovick, A., Dogadkin, O., Wang, L., Mulvana, H., Medan, Y., Melzer, A., Cochran, S.: In vitro investigation of the individual contributions of ultrasound-induced stable and inertial cavitation in targeted drug delivery. Ultrasound Med. Biol. 41, 1853–1864 (2015)

    Article  Google Scholar 

  55. Sierra, C., Acosta, C., Chen, C., Wu, S.Y., Karakatsani, M.E., Bernal, M., Konofagou, E.E.: Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening. J. Cereb. Blood Flow Metab. 37, 1236–1250 (2017)

    Article  CAS  Google Scholar 

  56. Gramiak, R., Shah, P.: Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968)

    Article  CAS  Google Scholar 

  57. Liu, Z., Kiessling, F., Gaetjens J.: Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J. Nanomater. (2010)

    Google Scholar 

  58. Abouelkacem, L., Bachawal, S.V., Willmann, J.K.: Ultrasound molecular imaging: moving toward clinical translation. Eur. J. Radiol. 84, 1685–1693 (2015)

    Article  Google Scholar 

  59. Appis, A.W., Tracy, M.J., Feinstein, S.B.: Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res. Pract. 2, R55–R62 (2015)

    Article  Google Scholar 

  60. McCulloch, M., Gresser, C., Moos, S., Odabashian, J., Jasper, S., Bednarz, J., Burgess, P., Carney, D., Moore, V., Sisk, E., Waggoner, A., Witt, S., Adams, D.: Ultrasound contrast physics: a series on contrast echocardiography, article 3. J. Am. Soc. Echocardiogr. 13, 959–967 (2000)

    Article  CAS  Google Scholar 

  61. Elsayed, M., Kothandaraman, A., Edirisinghe, M., Huang, J.: Porous polymeric films from microbubbles generated using a T-junction microfluidic device. Langmuir 32, 13377–13385 (2016)

    Article  CAS  Google Scholar 

  62. Dolan, M.S., Dent, J., de Filippi, C., Christopher, T., Wible, J.H.: Increasing the dose and rate of Albunex infusion leads to superior left ventricular contrast effect. J. Am. Soc. Echocardiogr. 11, 426–432 (1998)

    Article  CAS  Google Scholar 

  63. Drelich-Zbroja, A., Jargiello, T., Szymanska, A., Krzyzanowski, W., Szczerbo-Trojanowska, M.: Can Levovist-enhanced Doppler ultrasound replace angiography in abdominal branches of the aorta imaging? Ultrasound Med. Biol. 29, S195 (2003)

    Article  Google Scholar 

  64. Von Herbay, A., Haeussinger, D., Gregor, M., Vogt, C.: Characterization and detection of hepatocellular carcinoma (HCC): comparison of the ultrasound contrast agents SonoVue (BR1) and Levovist (SHU508A)–comparison of SonoVue and Levovist in HCC. Ultraschall Med. 28, 168–175 (2007)

    Article  Google Scholar 

  65. Miyamoto, Y., Ito, T., Takada, E., Omoto, K., Hirai, T., Moriyasu, F.: Efficacy of sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. Am. J. Roentgenol. 202, W400–W407 (2014)

    Article  Google Scholar 

  66. Ni, X., Ye, J., Wang, L., Xu, S., Zou, C., Yang, Y., Liu, Z.: Advanced microbubbles as a multifunctional platform combining imaging and therapy. Appl. Sci. 6, 365 (2016)

    Article  CAS  Google Scholar 

  67. Machtaler, S., Knieling, F., Luong, R., Tian, L., Willmann, J.K.: Assessment of inflammation in an acute on chronic model of inflammatory bowel disease with ultrasound molecular imaging. Theranostics 5, 1175–1186 (2015)

    Article  CAS  Google Scholar 

  68. Hu, G., Liu, C., Liao, Y., Yang, L., Huang, R., Wu, J., Xie, J., Bundhoo, K., Liu, Y., Bin, J.: Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb. Haemost. 107, 172–183 (2012)

    Article  CAS  Google Scholar 

  69. van Wamel, A., Kooiman, K., Harteveld, M., Emmer, M., ten Cate, F.J., Versluis, M., de Jong, N.: Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112, 149–155 (2006)

    Article  CAS  Google Scholar 

  70. Schlicher, R.K., Radhakrishna, H., Tolentino, T.P., Apkarian, R.P., Zarnitsyn, V., Prausnitz, M.R.: Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32, 915–924 (2006)

    Article  Google Scholar 

  71. Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M., Campbell, P.: Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1, 107 (2005)

    Article  CAS  Google Scholar 

  72. Zhou, Y., Yang, K., Cui, J., Ye, J.Y., Deng, C.X.: Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release 157, 103–111 (2012)

    Article  CAS  Google Scholar 

  73. Caskey, C.F., Stieger, S.M., Qin, S., Dayton, P.A., Ferrara, K.W.: Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J. Acoustic. Soc. Am. 122, 1191–1200 (2007)

    Article  CAS  Google Scholar 

  74. Chen, H., Brayman, A.A., Evan, A.P., Matula, T.J.: Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. Ultrasound Med. Biol. 38, 2151–2162 (2012)

    Article  Google Scholar 

  75. Dromi, S., Frenkel, V., Luk, A., Traughber, B., Angstadt, M., Bur, M., Poff, J., Xie, J., Libutti, S.K., Wood, B.J.: Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res. 13, 2722–2727 (2007)

    Article  CAS  Google Scholar 

  76. Watson, K.D., Lai, C.Y., Qin, S., Kruse, D.E., Lin, Y.C., Seo, J.W., Cardiff, R.D., Mahakian, L.M., Beegle, J., Ingham, E.S., Curry, F.R., Reed, R.K., Ferrara, K.W.: Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors. Cancer Res. 72, 1485–1493 (2012)

    Article  CAS  Google Scholar 

  77. Fujii, H., Li, S.H., Wu, J., Miyagi, Y., Yau, T.M., Rakowski, H., Egashira, K., Guo, J., Weisel, R.D., Li, R.K.: Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur. Heart J. 32, 2075–2084 (2011)

    Article  CAS  Google Scholar 

  78. Bekeredjian, R., Chen, S., Frenkel, P.A., Grayburn, P.A., Shohet, R.V.: Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 108, 1022–1026 (2003)

    Article  Google Scholar 

  79. Chertok, B., Langer, R., Anderson, D.G.: Spatial control of gene expression by nanocarriers using heparin masking and ultrasound-targeted microbubble destruction. ACS Nano 10, 7267–7278 (2016)

    Article  CAS  Google Scholar 

  80. Zhu, F., Jiang, Y., Luo, F., Li, P.: Effectiveness of localized ultrasound-targeted microbubble destruction with doxorubicin liposomes in H22 mouse hepatocellular carcinoma model. J. Drug Target. 23, 323–334 (2015)

    Article  CAS  Google Scholar 

  81. Aryal, M., Vykhodtseva, N., Zhang, Y.Z., Park, J., Mcdannold, N.: Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improves outcomes in a rat glioma model. J. Control. Release 169, 103–111 (2013)

    Article  CAS  Google Scholar 

  82. Smith, B.R., Gambhir, S.S.: Nanomaterials for in vivo imaging. Chem. Rev. 117, 901 (2017)

    Article  CAS  Google Scholar 

  83. Sevick-Muraca, E.M., Houston, J.P., Gurfinkel, M.: Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 6, 642 (2002)

    Article  CAS  Google Scholar 

  84. Weissleder, R., Mahmood, U.: Molecular imaging. Radiology 219, 316 (2001)

    Article  CAS  Google Scholar 

  85. Ntziachristos, V., Ripoll, J., Wang, L.V., Weissleder, R.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313 (2005)

    Article  CAS  Google Scholar 

  86. Wang, J., Mi, P., Lin, G., Wang, Y.X., Liu, G., Chen, X.: Imaging guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev. 104, 44–60 (2016)

    Article  CAS  Google Scholar 

  87. Zanzonico, P.: Noninvasive imaging for supporting basic research. In: Small Animal Imaging. Springer, Berlin (2011)

    Google Scholar 

  88. Wu, X., Wu, M., Zhao, J.X.: Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed. Nanotech. Biol. Med. 10, 297–312 (2014)

    Article  CAS  Google Scholar 

  89. Zhao, X., Tapec-Dytioco, R., Tan, W.: Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474 (2003)

    Article  CAS  Google Scholar 

  90. Herr, J.K., Smith, J.E., Medley, C.D., Shangguan, D., Tan, W.: Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006)

    Article  CAS  Google Scholar 

  91. Bamrungsap, S., Chen, T., Shukoor, M.I., Chen, Z., Sefah, K., Chen, Y., Tan, W.: Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6, 3974–3981 (2012)

    Article  CAS  Google Scholar 

  92. Lu, J., Liong, M., Li, Z., Zink, J.I., Tamanoi, F.: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6, 1794–1805 (2010)

    Article  CAS  Google Scholar 

  93. Jun, B.H., Hwang, D.W., Jung, H.S., Jang, J., Kim, H., Kang, H.: Ultrasensitive, biocompatible, quantum-dot-embedded silica nanoparticles for bioimaging. Adv. Func. Mater. 22, 1843–1849 (2012)

    Article  CAS  Google Scholar 

  94. Wilhelm, M., Zhao, C.L., Wang, Y., Xu, R., Winnik, M.A., Mura, J.L.: Poly (styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24, 1033–1040 (1991)

    Article  CAS  Google Scholar 

  95. Yan, K., Li, H., Li, P., Zhu, H., Shen, J., Yi, C.: Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials 35, 344–355 (2014)

    Article  CAS  Google Scholar 

  96. Li, C., Xia, J., Wei, X., Yan, H., Si, Z., Ju, S.: Ph-activated near-infrared fluorescence nanoprobe imaging tumors by sensing the acidic microenvironment. Adv. Func. Mater. 20, 2222–2230 (2010)

    Article  CAS  Google Scholar 

  97. Wang, W., Cheng, D., Gong, F., Miao, X., Shuai, X.: Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv. Mater. 24, 115–120 (2012)

    Article  CAS  Google Scholar 

  98. Auzel, F.: Upconversion and anti-stokes processes with f- and d-ions in solids. Chem. Rev. 104, 139–173 (2004)

    Article  CAS  Google Scholar 

  99. Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z., Zhao, Y.: Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)

    Article  CAS  Google Scholar 

  100. Liu, Y., Tu, D., Zhu, H., Chen, X.: Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924 (2013)

    Article  CAS  Google Scholar 

  101. Cheng, L., Yang, K., Li, Y., Chen, J., Wang, C., Shao, M., Lee, S.T., Liu, Z.: Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 50, 7385–7390 (2011)

    Article  CAS  Google Scholar 

  102. Cheng, L., Wang, C., Liu, Z.: Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5, 23–37 (2012)

    Article  Google Scholar 

  103. Ehlert, O., Thomann, R., Darbandi, M., Nann, T.: A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120 (2008)

    Article  CAS  Google Scholar 

  104. Liu, Q., Yang, T., Feng, W., Li, F.: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 134, 5390 (2012)

    Article  CAS  Google Scholar 

  105. Liu, Q., Yin, B., Yang, T., Yang, Y., Shen, Z., Yao, P.: A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J. Am. Chem. Soc. 135, 5029 (2013)

    Article  CAS  Google Scholar 

  106. Xiong, L.Q., Chen, Z.G., Yu, M.X., Li, F.Y., Liu, C., Huang, C.H.: Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30, 5592–5600 (2009)

    Article  CAS  Google Scholar 

  107. Xiong, L., Chen, Z., Tian, Q., Cao, T., Xu, C., Li, F.: High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 81, 8687–8694 (2009)

    Article  CAS  Google Scholar 

  108. Wang, M., Mi, C.C., Wang, W.X., Liu, C.H., Wu, Y.F., Xu, Z.R.: Immunolabeling and nir-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 3, 1580 (2009)

    Article  CAS  Google Scholar 

  109. Cheng, L., Yang, K., Zhang, S., Shao, M., Lee, S., Liu, Z.: Highly-sensitive multiplexed in vivo, imaging using pegylated upconversion nanoparticles. Nano Res. 3, 722–732 (2010)

    Article  CAS  Google Scholar 

  110. Liang, C., Wang, C., Ma, X., Wang, Q., Cheng, Y., Wang, H.: Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv. Func. Mater. 23, 272–280 (2013)

    Article  CAS  Google Scholar 

  111. Zhao, L., Kutikov, A., Shen, J., Duan, C., Song, J., Han, G.: Stem cell labeling using polyethylenimine conjugated (α-naybf4:tm3 +)/caf2 upconversion nanoparticles. Theranostics 3, 249–257 (2013)

    Article  CAS  Google Scholar 

  112. Min, Y., Li, J., Liu, F., Padmanabhan, P., Yeow, E., Xing, B.: Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials. Nanomaterials 4, 129–154 (2014)

    Article  CAS  Google Scholar 

  113. Phelps, M.E., Hoffman, E.J., Mullani, N.A., Ter-Pogossian, M.M.: Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nuc. Med. 16, 210 (1975)

    CAS  Google Scholar 

  114. Terpogossian, M.M., Phelps, M.E., Hoffman, E.J., Mullani, N.A.: A positron-emission transaxial tomograph for nuclear imaging. Radiology 114, 89 (1975)

    Article  CAS  Google Scholar 

  115. Soret, M., Bacharach, S.L., Buvat, I.: Partial-volume effect in PET tumor imaging. J. Nuc. Med. 48, 932–945 (2007)

    Article  Google Scholar 

  116. Cascini, G.L., Avallone, A., Delrio, P., Guida, C., Tatangelo, F., Marone, P.: 18F-FDG pet is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advanced rectal cancer. J. Nuc. Med. 47, 1241 (2006)

    CAS  Google Scholar 

  117. Kwee, R.M.: Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18F-FDG PET: a systematic review. Radiology 254, 707–717 (2010)

    Article  Google Scholar 

  118. Phelps, M.E.: Positron Emission Tomography Clinical Brain Imaging: Principles and Applications. F.A. Davis Company, Philadelphia (1992)

    Google Scholar 

  119. Sharma, V., Luker, G.D., Piwnicaworms, D.: Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J. Magn. Reson. Imaging 16, 336–351 (2002)

    Article  Google Scholar 

  120. Kirsch, M., Wannez, S., Thibaut, A., Laureys, S., Brichant, J.F., Bonhomme, V.: Positron emission tomography: basic principles, new applications, and studies under anesthesia. Int. Anesthesiol. Clin. 54, 109 (2016)

    Article  Google Scholar 

  121. Zanzonico, P.: Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin. Nuc. Med. 34, 87 (2004)

    Article  Google Scholar 

  122. Schwinger, J.: Source theory analysis of electron-positron annihilation experiments. Proc. Nat. Acad. Sci. USA 72, 4725–4728 (1975)

    Article  CAS  Google Scholar 

  123. Mirabello, V., Calatayud, D.G., Arrowsmith, R.L., Ge, H., Pascu, S.I.: Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications. J. Mater. Chem. B 3, 5657–5672 (2015)

    Article  CAS  Google Scholar 

  124. Kuhl, D.E., Edwards, R.Q.: Image separation radioisotope scanning. Radiology 80, 653–666 (1963)

    Article  Google Scholar 

  125. Vogel, R.A., Kirch, D., Lefree, M., Steele, P.: A new method of multiplanar emission tomography using a seven pinhole collimator and an anger scintillation camera. J. Nuc. Med. 19, 648–654 (1978)

    CAS  Google Scholar 

  126. Groch, M.W., Ali, A., Erwin, W.D., Fordham, E.F.: Focal plane dual-head longitudinal tomography. In: Ahluwalia, B.D. (ed.) Tomographic Methods in Nuclear Medicine: Physical Principles, Instruments and Clinical Applications, pp. 123–150. FL. CRC Press, Boca Raton (1989)

    Google Scholar 

  127. Murphy, P.H., Thompson, W.L., Moore, M.L., Burdine, J.A.: Radionuclide computed tomography of the body using routine radiopharmaceuticals. I. System characterization. J. Nuc. Med. 20, 102–107 (1979)

    CAS  Google Scholar 

  128. Keidar, Z., Israel, O., Krausz, Y.: SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin. Nuc. Med. 33, 205 (2003)

    Article  Google Scholar 

  129. Heiba, S.I., Kolker, D., Mocherla, B., Kapoor, K., Jiang, M., Son, H.: The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J. Foot Ankle Surg. 49, 529–536 (2010)

    Article  Google Scholar 

  130. Spanu, A., Solinas, M.F., Sanna, D., Nuvoli, S., Madeddu, G.: 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J. Nuc. Med. 50, 184 (2009)

    Article  Google Scholar 

  131. Mandl, S., Schimmelpfennig, C., Edinger, M., Negrin, R.S., Contag, C.H.: Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J. Cell. Biochem. Suppl. 39, 239 (2002)

    Article  CAS  Google Scholar 

  132. Lu, F.M., Yuan, Z.: PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015)

    Google Scholar 

  133. Pimlott, S.L., Sutherland, A.: Molecular tracers for the PET and SPECT imaging of disease. Chem. Soc. Rev. 40, 149–162 (2011)

    Article  CAS  Google Scholar 

  134. Kannan, S., Saadani-Makki, F., Balakrishnan, B.: Magnitude of [11C] PK11195 binding is related to severity of motor deficits in a rabbit model of cerebral palsy induced by intrauterine endotoxin exposure. Dev. Neurosci. (Basel) 33, 231–240 (2011)

    Article  CAS  Google Scholar 

  135. Chung, Y.A., Jh, O., Kim, J.Y.: Hypoperfusion and ischemia in cerebral amyloid angiopathy documented by 99mTc-ECD brain perfusion SPECT. J. Nuc. Med. 2009, 50 (1969)

    Google Scholar 

  136. Hyafil, F., Cornily, J.C., Feig, J.E., Gordon, R., Vucic, E., Amirbekian, V.: Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 13, 636–641 (2007)

    Article  CAS  Google Scholar 

  137. Jakhmola, A., Anton, N., Vandamme, T.F.: Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv. Healthcare Mater. 1, 413–431 (2012)

    Article  CAS  Google Scholar 

  138. Archana, R., Sushma, P., Ashok, L., Sujatha, G.P.: Cone-beam computed tomography: small cone big scoop! J. Dent. Oral Med. 3, 501 (2010)

    Google Scholar 

  139. Pysz, M.A., Gambhir, S.S., Willmann, J.K.: Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010)

    Article  CAS  Google Scholar 

  140. Chung, Y.E., Hyung, W.J., Kweon, S., Lim, S.J., Lee, M.H., Kim, H., Myoung, S., Lim, J.S.: Feasibility of interstitial CT lymphography using optimized iodized oil emulsion in rats. Invest. Radiol. 45, 142–148 (2010)

    Article  Google Scholar 

  141. Kweon, S.J., Lee, H.J., Suh, J.S., Lim, J.S., Lim, S.J.: Liposomes coloaded with iopamidol/lipiodol as a RES-targeted contrast agent for computed tomography imaging. Pharm. Res. 27, 1408–1415 (2010)

    Article  CAS  Google Scholar 

  142. Yin, Q., Yap, F.Y., Yin, L., Ma, L., Zhou, Q., Dobrucki, L.W., Fan, T.M., Gaba, R.C., Cheng, J.: Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 135, 13620–13623 (2013)

    Article  CAS  Google Scholar 

  143. Rabin, O., Maneul, P.J., Grimm, J., Wojtkiewicz, G., Weissleder, R.: An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006)

    Article  CAS  Google Scholar 

  144. Pan, D., Schirra, C.O., Senpan, A., Schmieder, A.H., Stacy, A.J., Roessl, E., Thran, A., Wickline, S.A., Proska, R., Lanza, G.M.: An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano 6, 3364–3370 (2012)

    Article  CAS  Google Scholar 

  145. Jakhmola, A., Anton, N., Anton, H., Messaddeq, N., Hallouard, F., Klymchenko, A., Mely, Y., Vandamme, T.F.: Poly-ε-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials 35, 2981–2986 (2014)

    Article  CAS  Google Scholar 

  146. Yamanaka, M., Smith, N.I., Fujita, K.: Introduction to super-resolution microscopy. Microscopy 63, 177–192 (2014)

    Article  Google Scholar 

  147. Kobayashi, H., Longmire, M.R., Ogawa, M., Choyke, P.L.: Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem. Soc. Rev. 40, 4626–4648 (2011)

    Article  CAS  Google Scholar 

  148. Cai, W.B., Chen, X.Y.: Multimodality molecular imaging of tumor angiogenesis. J. Nuc. Med. 49, 113S–128S (2008)

    Article  CAS  Google Scholar 

  149. Olson, E.S., Jiang, T., Aguilera, T.A., Nguyen, Q.T., Ellies, L.G., Scadeng, M.: Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and mr imaging of proteases. Proc. Nat. Acad. Sci. USA 107, 4311–4316 (2010)

    Article  Google Scholar 

  150. Savic, R., Luo, L., Eisenberg, L., Maysinger, D.: Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300, 615–618 (2003)

    Article  CAS  Google Scholar 

  151. Miura, Y., Tsuji, A.B., Sugyo, A., Sudo, H., Aoki, I., Inubushi, M.: Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater. Sci. Eng. 1, 1067–1076 (2015)

    Article  CAS  Google Scholar 

  152. Seulki, L., Chen, X.: Dual-modality probes for in vivo molecular imaging. Mol. Imaging 8, 87–100 (2009)

    Google Scholar 

  153. Louie, A.Y.: Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010)

    Article  CAS  Google Scholar 

  154. Glaus, C., Rossin, R., Welch, M.J., Bao, G.: In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjugate Chem. 21, 715 (2010)

    Article  CAS  Google Scholar 

  155. Sun, I.C., Eun, D.K., Na, J.H., Lee, S., Kim, I.J., Youn, I.C.: Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry 15, 13341–13347 (2009)

    Article  CAS  Google Scholar 

  156. Qian, X.M., Nie, S.M.: Single-molecule and single-nanoparticle sers: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912–920 (2008)

    Article  CAS  Google Scholar 

  157. Eustis, S., Elsayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209 (2006)

    Article  CAS  Google Scholar 

  158. Dreaden, E.C., Mackey, M.A., Huang, X., Kang, B., Elsayed, M.A.: Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40, 3391 (2011)

    Article  CAS  Google Scholar 

  159. Song, Y., Xu, X., Macrenaris, K.W., Zhang, X.Q., Mirkin, C.A., Meade, T.J.: Multimodal gadolinium-enriched dna gold nanoparticle conjugates for cellular imaging. Angew. Chem. 48, 9143 (2009)

    Article  CAS  Google Scholar 

  160. Sun, H., Yuan, Q., Zhang, B., Ai, K., Zhang, P., Lu, L.: Gd(III) functionalized gold nanorods for multimodal imaging applications. Nanoscale 3, 1990–1996 (2011)

    Article  CAS  Google Scholar 

  161. Sun, M., Peng, D., Hao, H., Hu, J., Wang, D., Wang, K.: Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Appl. Mater. Interfaces. 9, 10453 (2017)

    Article  CAS  Google Scholar 

  162. Ji, S.R., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J.: Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta 1806, 29 (2010)

    CAS  Google Scholar 

  163. Chen, B., Zhang, H., Zhai, C., Du, N., Sun, C., Xue, J.: Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging. J. Mater. Chem. 20, 9895–9902 (2010)

    Article  CAS  Google Scholar 

  164. Chen, B., Zhang, H., Du, N., Zhang, B., Wu, Y., Shi, D.: Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd Co-doped LaF3 as a multimodal imaging probe. J. Colloid Interface Sci. 367, 61 (2012)

    Article  CAS  Google Scholar 

  165. Yang, K., Hu, L., Ma, X., Ye, S., Cheng, L., Shi, X.: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24 (1868)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, F. et al. (2018). Biomedical Applications of Functional Micro-/Nanoimaging Probes. In: Liu, Z. (eds) Advances in Functional Micro-/Nanoimaging Probes. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-4804-3_3

Download citation

Publish with us

Policies and ethics