Skip to main content

Enzymatic Synthesis of l-Cysteine by Escherichia coli Whole-Cell Biocatalyst

  • Conference paper
  • First Online:
Advances in Applied Biotechnology (ICAB 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 444))

Included in the following conference series:

Abstract

l-cysteine, a sulfur-containing amino acid with important physiological function, is usually extracted from hydrolyzed protein. In this study, we focused on a biocatalytic process with Escherichia coli whole-cell biocatalyst for the production of l-cysteine. The genes encoding l-2-amino-Δ2-thiazoline-4-carboxylic acid (l-ATC) hydrolase (atcB) and N-carbamoyl-l-cysteine (l-NCC) amidohydrolase (atcC) were synthesized and expressed in E. coli BL21. The recombinant E. coli strain was used as the whole-cell biocatalyst to convert dl-ATC, and 13.1 mM of l-cysteine was accumulated. Deletion of the l-cysteine desulfhydrase gene tnaA in E. coli BL21 resulted in a further 54.4% increase of l-cysteine production. The optimal pH and temperature of l-cysteine production were 7.0 and 37 °C, respectively. In addition, we also explored the effects of glycerol concentration on the accumulation of l-cysteine. It shows that the optimal glycerol concentration was 10%. Finally, 70.2 mM of l-cysteine was accumulated at 8 h under optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuśmierek K, Bald E (2008) Reduced and total glutathione and cysteine profiles of citrus fruit juices using liquid chromatography. Food Chem 106(1):340–344

    Article  Google Scholar 

  2. Ismail NI, Hashim YZ, Jamal P et al (2014) Production of cysteine: approaches, challenges and potential Solution. Inter J Biotechfor Wellness Ind 3:95–101

    Article  Google Scholar 

  3. Duan J, Zhang Q, Zhao H et al (2012) Cloning, expression, characterization and application of atcA, atcB and atcC from Pseudomonas sp. for the production of l-cysteine. Biotech Lett 34(6):1101–1106

    Article  CAS  Google Scholar 

  4. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biot 69(1):1–8

    Article  CAS  Google Scholar 

  5. Chen N, Huang J, Feng ZB et al (2009) Optimization of fermentation conditions for the biosynthesis of l-threonine by Escherichia coli. Appl Biochem Biotechnol 158(3):595–604

    Article  CAS  Google Scholar 

  6. Park JH, Jang YS, Lee JW et al (2011) Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol Bioeng 108(5):1140–1147

    Article  CAS  Google Scholar 

  7. Grant GA, Hu Z, Xu XL (2001) Specific interactions at the regulatory domain-substrate binding domain interface influence the cooperativity of inhibition and effector binding in Escherichia coli D-3-phosphoglycerate dehydrogenase. J Biol Chem 276(2):1078–1083

    Article  CAS  Google Scholar 

  8. Nakatani T, Ohtsu I, Nonaka G et al (2012) Enhancement of thioredoxin/glutaredoxin-mediated l-cysteine synthesis from S-sulfocysteine increases l-cysteine production in Escherichia coli. Microb Cell Fact 11(1):62

    Article  CAS  Google Scholar 

  9. Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 185(6):1942–1950

    Article  CAS  Google Scholar 

  10. Sørensen MA, Pedersen S (1991) Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173(16):5244–5246

    Article  Google Scholar 

  11. Sand K, Eguchi C, Yasuda N et al (1979) Metabolic pathway of l-cysteine formation from dl-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas. J Gen Appl Microbiol 43(11):2373–2374

    Google Scholar 

  12. Yu Y, Liu Z, Liu C et al (2006) Cloning, expression, and identification of genes involved in the conversion of dl-2-Amino-Δ2-thiazoline-4-carboxylic acid to l-cysteine via S-Carbamyl-l-cysteine pathway in Pseudomonas sp. TS1138. Biosci Biotechnol Biochem 70(9):2262–2267

    Article  CAS  Google Scholar 

  13. Tamura Y, Ohmachi T, Asada Y (2001) Induction of 2-amino-Δ2-thiazoline-4-carboxylic acid hydrolase and N-carbamoyl-l-cysteine amidohydrolase by S-compounds in Pseudomonas putida AJ3865. J Gen Appl Microbiol 47(4):193–200

    Article  CAS  Google Scholar 

  14. Tamura Y, Nishino M, Ohmachi T et al (1998) N-carbamoyl-l-cysteine as an intermediate in the bioconversion from dl-2-Amino-Δ2-thiazoline-4-carboxylic acid to l-cysteine by Pseudomonas sp. ON-4a. Biosci Biotechnol Biochem 62(11):2226–2229

    Article  CAS  Google Scholar 

  15. Huai L, Chen N, Yang W et al (2009) Metabolic control analysis of l-cysteine producing strain TS1138 of Pseudomonas sp. Biochemistry (Mosc) 74(3):288–292

    Article  CAS  Google Scholar 

  16. Youn SH, Park HW. Shin CS (2012) Enhanced dissolution of the substrate dl-2-amino-Δ2-thiazoline-4-carboxylic acid and enzymatic production of l-cysteine at high concentrations. Eng Life Sci. 12:514–517

    Google Scholar 

  17. Gu X, Li C, Cai Y, Dong H et al (2013) Construction of lactococcus lactis thyA-null using the Red recombination system. Ann Microbiol 63(3):951–956

    Article  CAS  Google Scholar 

  18. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  Google Scholar 

  19. Awano N, Wada M, Kohdoh T et al (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62(2):239–243

    Article  CAS  Google Scholar 

  20. Dwivedi CM, Ragin RC, Uren JR (1982) Cloning, purification, and characterization of beta-cystathionase from Escherichia coli. Biochemistry 21(13):3064–3069

    Article  CAS  Google Scholar 

  21. Awano N, Wada M, Mori H et al (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71(7):4149–4152

    Article  CAS  Google Scholar 

  22. Read JF, Bewick S, Graves CR et al (2000) The kinetics and mechanism of the oxidation of s-methyl-l-cysteine, l-cystine and l-cysteine by potassium ferrate. Inorg Chim Acta 303(2):244–255

    Article  CAS  Google Scholar 

  23. Sano K, Mitsugi K (1978) Enzymatic production of l-cysteine from dl-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas thiazolinophilum: optimal conditions for the enzyme formation and enzymatic reaction. Agric Biol Chem 42(12):2315–2321

    CAS  Google Scholar 

  24. Youn SH, Park HW, Choe D et al (2014) Preparation of eutectic substrate mixtures for enzymatic conversion of ATC to l-cysteine at high concentration levels. Bioprocess Biosyst Eng 37(6):1193–1200

    Article  CAS  Google Scholar 

  25. Kumar A, Pawar SS (2012) High viscosity of ionic liquids causes rate retardation of Diels-Alder reactions. Sci China Chem 55(8):1633–1637

    Article  CAS  Google Scholar 

  26. Wang P, He JY, Yin JF (2015) Enhanced biocatalytic production of l-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin. Bioprocess Biosyst Eng 38(3):421–428

    Article  CAS  Google Scholar 

  27. Wada M, Takagi H (2006) Metabolic pathways and biotechnological production of l-cysteine. Appl Microbiol Biotechnol 73(1):48–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Tianjin Science and Technology Support Program (NO. 16YFZCSY00770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xixian Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ma, M., Liu, T., Wu, H., Yan, F., Chen, N., Xie, X. (2018). Enzymatic Synthesis of l-Cysteine by Escherichia coli Whole-Cell Biocatalyst. In: Liu, H., Song, C., Ram, A. (eds) Advances in Applied Biotechnology. ICAB 2016. Lecture Notes in Electrical Engineering, vol 444. Springer, Singapore. https://doi.org/10.1007/978-981-10-4801-2_48

Download citation

Publish with us

Policies and ethics