Skip to main content

Study on the Different Replacing Groups of Trans-Paroxol for Enzymatic Resolution Using Molecular Simulations

  • Conference paper
  • First Online:
Advances in Applied Biotechnology (ICAB 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 444))

Included in the following conference series:

  • 1884 Accesses

Abstract

Trans-paroxol is an important key intermediate for paroxetine synthesis. Four different replacing groups of trans-paroxol on the kinetic resolution were studied to illuminate the mechanism of enzymatic catalysis using molecular simulations. Hydrogen bonds, hydrophobic interactions and the protein structure were analysed for enzyme-substrate complex. Results indicated that the formation of hydrogen bond, hydrophobic interactions and the distribution of substrate conformation in active site were the major forces which resulted in the diversity of enzymatic resolution. Electrostatic interactions and the stability of complex also played an important role in this reaction. This study will be quite useful for understanding the mechanism of enzymatic resolution and guiding to design the appropriate substrate for paroxetine synthesis.

This research was supported by National Natural Science Foundation of China (21676143), Qing Lan Project of Jiangsu Province, program for Innovative Research Team in University of Jiangsu Province and the Hi-Tech Research and Development Program of China (863 Program, 2011AA02A209).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De GG, Brieva R, Sánchez VM, Bayod M, Gotor V (2001) Enzymatic resolution of trans-4-(4′-fluorophenyl)-3-hydroxymethylpiperidines, key intermediates in the synthesis of (-)-paroxetine. J Org Chem 6626:8947–8953

    Google Scholar 

  2. Su B, Bao Z, Xing H, Yang Y, Ren Q (2009) Enantioseparation of paroxetine intermediate on an amylose-derived chiral stationary phase by supercritical fluid chromatography. J Chromatogr A 121626:5140–5146

    Article  Google Scholar 

  3. Christensen JA, Squires RF (1977) 4-Phenylpiperidine compounds. U.S. Patents 4007196, 8 Feb 1977

    Google Scholar 

  4. Amat M, Bosch J, Hidalgo J, Cantó M, Pérez M, Llor N et al (2000) Synthesis of enantiopure trans-3, 4-disubstituted piperidines. An enantiodivergent synthesis of (+)-and (-)-paroxetine. J Org Chem 6510:3074–3084

    Article  Google Scholar 

  5. Gledhill L, Kell C (1998) Aminometyl oxooxazolidinyl benzene derivatives W.O. Patent 1999011642, 11 Mar 1998

    Google Scholar 

  6. Zepp M, Gas Y, Heefner D (1993) Method of preparing optically pure precursors of paroxetine, U.S. Patent 5258517, 2 Nov 1993

    Google Scholar 

  7. Marvin SY, Lantos I, Peng ZQ, Yu J, Cacchio T (2000) Asymmetric synthesis of (−)-paroxetine using PLE hydrolysis. Tetrahedron Lett 4130:5647–5651

    Google Scholar 

  8. Jia YG, Liu WM, Ni X, Huang H, Hu Y (2015) Kinetic resolution of transesterification reaction of trans-paroxol catalyzed by lipase in organic media. Chem Ind Eng Prog 34(S1):116–120

    Google Scholar 

  9. Liu J, Yu H, Shen Z (2008) Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. J Mol Graph Model 274:529–535

    Article  Google Scholar 

  10. Pikkemaat MG, Linssen AB, Berendsen HJ, Janssen DB (2002) Molecular dynamics simulations as a tool for improving protein stability. Protein Eng 153:185–192

    Article  Google Scholar 

  11. Chen H, Wu J, Yang L, Xu G (2013) A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase. BBA-Protein Proteom 183412:2494–2501

    Article  Google Scholar 

  12. Park HJ, Park K, Yoo YJ (2013) Understanding the effect of tert-butanol on Candida antarctica lipase B using molecular dynamics simulations. Mol Simulat 398:653–659

    Article  Google Scholar 

  13. Wang Y, Wang X (2015) Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles. Food Chem 188:24–29

    Article  CAS  Google Scholar 

  14. Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y et al (2015) Interdomain hydrophobic interactions modulate the thermostability of microbial Esterases from the Hormone-Sensitive Lipase Family. J Biol Chem 29017:11188–11198

    Article  Google Scholar 

  15. Jung JH, Yoon DH, Kang P, Lee WK, Eum H, Ha HJ (2013) CAL-B catalyzed desymmetrization of 3-alkylglutarate: “olefin effect” and asymmetric synthesis of pregabalin. Org Biomol Chem 1122:3635–3641

    Article  Google Scholar 

  16. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 3016:2785–2791

    Article  Google Scholar 

  17. DeLano WL (2002) The PyMOL molecular graphics system, version 1.5.0.4. Schrödinger, LLC, Portland

    Google Scholar 

  18. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 2616:1701–1718

    Article  Google Scholar 

  19. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics: btt055

    Google Scholar 

  20. Oostenbrink C, Soares TA, Van der Vegt NF, Van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 344:273–284

    Article  Google Scholar 

  21. van Gunsteren WF, Berendsen HJ (1990) Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chem Int Ed 299:992–1023

    Article  Google Scholar 

  22. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J Chem Phys 9812:10089–10092

    Article  Google Scholar 

  23. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1812:1463–1472

    Article  Google Scholar 

  24. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 138:952–962

    Article  Google Scholar 

  25. Hermans J, Berendsen HJ, Van Gunsteren WF, Postma JP (1984) A consistent empirical potential for water–protein interactions. Biopolymers 238:1513–1518

    Article  Google Scholar 

  26. Smith PE, van Gunsteren WF (1994) Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J Chem Phys 1004:3169–3174

    Article  Google Scholar 

  27. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 818:3684–3690

    Article  Google Scholar 

  28. Escorcia AM, Daza MC, Doerr M (2014) Computational study of the enantioselectivity of the O-acetylation of (R, S)-propranolol catalyzed by Candida antarctica lipase B. J Mol Catal B Enzym 108:21–31

    Article  CAS  Google Scholar 

  29. Matsumura H, Yamamoto T, Leow TC, Mori T, Salleh AB, Basri M et al (2008) Novel cation-π interaction revealed by crystal structure of thermoalkalophilic lipase. Proteins Struct Funct Bioinf 702:592–598

    Google Scholar 

  30. Yao J, Xu Q, Guo H (2013) QM/MM and free-energy simulations of deacylation reaction catalysed by sedolisin, a serine-carboxyl peptidase. Mol Simulat 393:206–213

    Article  Google Scholar 

  31. Hamberg A, Magnusson AO, Hu FJ, Hult K (2013) Selective Monoacylation of diols by substrate assisted catalysis in T40A Candida antarctica Lipase B. Chem Cat Chem 53:743–747

    Google Scholar 

  32. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 4096817:241–246

    Article  Google Scholar 

  33. Zaks A, Klibanov AM (1988) The effect of water on enzyme action in organic media. J Biol Chem 26317:8017–8021

    Google Scholar 

  34. Valivety RH, Halling PJ, Macrae AR (1992) Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim Biophys Acta Protein Struct Mol Enzymol 11183:218–222

    Article  Google Scholar 

  35. Affleck R, Haynes CA, Clark DS (1992) Solvent dielectric effects on protein dynamics. Proc Nat Acad Sci 8911:5167–5170

    Article  Google Scholar 

  36. Park HJ, Joo JC, Park K, Yoo YJ (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol Bioproc Eng 174:722–728

    Article  Google Scholar 

  37. Carter P, Wells JA (1990) Functional interaction among catalytic residues in subtilisin BPN′. Proteins: Struct. Funct Bioinf 74:335–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zhang, C., Jia, Y., Xu, C., Huang, H., Hu, Y. (2018). Study on the Different Replacing Groups of Trans-Paroxol for Enzymatic Resolution Using Molecular Simulations. In: Liu, H., Song, C., Ram, A. (eds) Advances in Applied Biotechnology. ICAB 2016. Lecture Notes in Electrical Engineering, vol 444. Springer, Singapore. https://doi.org/10.1007/978-981-10-4801-2_37

Download citation

Publish with us

Policies and ethics