Skip to main content

Exploitation of a KU70-Deficient Mutant for Improving Gene Deletion Frequency in Aspergillus niger

  • Conference paper
  • First Online:
Advances in Applied Biotechnology (ICAB 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 444))

Included in the following conference series:

Abstract

Filamentous fungus Aspergillus niger CGMCC 10142 was successfully transformed with Agrobacterium tumefaciens AGL-1 for nonhomologous end-joining (NHEJ) or homologous recombination (HR) of transforming DNA (T-DNA). To improve targeting frequency, the KU70-deficient mutant (Δku70) in A. niger CGMCC 10142 was deleted, obtaining the new strain A. niger Δku70. Co-cultivation of A. niger conidia with A. tumefaciens in the proper concentration of acetosyringone resulted in the formation of Δku70 with the hygromycin B-resistance. It showed a dramatically improved targeted gene deletion frequency, with other transformants such as tpsA, cs, pd, and aox1 gene being true knockout when bleomycin resistant was used based on Δku70. All the selected resistant transformants were proved to be stable through subculture and the knocking-out integration of the G418 gene into the genome was determined by PCR. The results showed that the efficiency of HR was 40–80% higher comparing with original strain CGMCC 10142, which suggests that the deficiency of ku70 can improve gene deletion efficiency in A. niger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer V (2008) Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  Google Scholar 

  2. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  Google Scholar 

  3. Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25–29

    Article  Google Scholar 

  4. Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    Article  Google Scholar 

  5. Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    Article  CAS  Google Scholar 

  6. Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412:607–614

    Article  CAS  Google Scholar 

  7. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Ann Rev Biochem 79:181–211

    Article  CAS  Google Scholar 

  8. Daley JM, Palmbos PL, Wu D et al (2005) Nonhomologous end joining in yeast. Ann Rev Genet 39:431–451

    Article  CAS  Google Scholar 

  9. Ninomiya Y, Suzuki K, Ishii C et al (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Article  CAS  Google Scholar 

  10. Meyer V, Arentshorst M, El-Ghezal A et al (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Article  CAS  Google Scholar 

  11. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotech 9:963–967

    Article  CAS  Google Scholar 

  12. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  13. Atlas RM (1997) Handbook of microbiological media, 2nd edn. CRC Pr I Llc, pp 283–284

    Google Scholar 

  14. Haq I, Ali S, Iqbal J (2003) Direct production of citric acid from raw starch by Aspergillus niger. Process Biochem 38:921–924

    Article  CAS  Google Scholar 

  15. de Groot MJA, Bundock P, Hooykaas PJJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  Google Scholar 

  16. Sugui JA, Chang YC, Kwon-Chung KJ (2005) Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and target gene disruption. Appl Environ Microbiol 71:1798–1802

    Article  CAS  Google Scholar 

  17. Shao YC, Ding YD, Zhao Y et al (2009) Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber. World J Microbiol Biotechnol 25(6):989–995

    Article  CAS  Google Scholar 

  18. Yuan LX, van der Kaaij RM, van den Hondel CA et al (2008) Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomic 279:545–561

    Article  CAS  Google Scholar 

  19. Cheng Z, Xue YF, Zhang YL et al (2009) Recombinant expression and characterization of Thermoanaerobacter tengcongensis thermostable α-glucosidase with regioselectivity for high-yield isomaltooligosaccharides synthesis. J Microbiol Biotechnol 19:1547–1556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-pei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Yin, Lh., Zhang, L., Liu, L., Zhang, H., Hou, L., Wang, Dp. (2018). Exploitation of a KU70-Deficient Mutant for Improving Gene Deletion Frequency in Aspergillus niger . In: Liu, H., Song, C., Ram, A. (eds) Advances in Applied Biotechnology. ICAB 2016. Lecture Notes in Electrical Engineering, vol 444. Springer, Singapore. https://doi.org/10.1007/978-981-10-4801-2_11

Download citation

Publish with us

Policies and ethics