Skip to main content

Abstract

Self-sensing concrete has the capability to sense the conditions inside it and environmental change including stress (or force), strain (or deformation), crack, damage, temperature, and humidity through incorporating functional fillers or sensing component. It can be classified into intrinsic self-sensing concrete and non-intrinsic self-sensing concrete. The physical parameters of self-sensing concrete will change as it is subjected to external force, deformation, or environmental action, thus presenting sensing capability. The self-sensing concrete has great potential in the fields of structural health monitoring, traffic detection, and border/military security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.C. Aitcin, Cements of yesterday and today: concrete of tomorrow. Cem. Concr. Res. 30(9), 1349–1359 (2000)

    Article  Google Scholar 

  2. R. Davies, Remote monitoring of reinforced concrete structures. Concrete 38(5), 14–15 (2004)

    Google Scholar 

  3. K.P. Chong, Health monitoring of civil structures. J. Intell. Mater. Syst. Struct. 9(9), 892–898 (1998)

    Article  Google Scholar 

  4. J.P. Ou, Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT. Proc. SPIE- Int. Soc. Opt. Eng. 5851, 147–162 (2005)

    Google Scholar 

  5. J.W., Berthold III. Historical review of microbend fiber-optic sensors: Optical fiber sensors. J. Lightwave Technol. 13(7):1193–1199 (1995)

    Google Scholar 

  6. H. Inada, Y. Okuhara, H. Kumagai. Experimental study on structural health monitoring of RC columns using self-diagnosis materials. Smart structures and materials. Int. Soc. Opt. Photonics 609–617 (2004)

    Google Scholar 

  7. H. Li, Z.Q. Liu, Z.W. Li, J.P. Ou, Study on damage emergency repair performance of a simple beam embedded with shape memory alloys. Adv. Struct. Eng. 7(6), 495–502 (2004)

    Article  Google Scholar 

  8. S. Park, S. Ahmad, C.B. Yun, Y. Roh, Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp. Mech. 46(5), 609–618 (2006)

    Article  Google Scholar 

  9. P.W. Chen, D.D.L. Chung, Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater. Struct. 2(1), 22–30 (1993)

    Article  Google Scholar 

  10. P. Shukla, V. Bhatia, V. Gaur, R.K. Basniwal, B.K. Singh, V.K. Jain, Multiwalled carbon nanotubes reinforced portland cement composites for smoke detection. Solid State Phenom. 185, 21–24 (2012)

    Article  Google Scholar 

  11. H. Kim, Chloride penetration monitoring in reinforced concrete structure using carbon nanotube/cement composite. Constr. Build. Mater. 96, 29–36 (2015)

    Article  Google Scholar 

  12. B.G. Han, Y.Y. Wang, S.Q. Ding, X. Yu, L.Q. Zhang, Z. Li, J.P. Ou. Self-sensing cementitious composites incorporated with botryoid hybrid nano-carbon materials for smart infrastructures. J. Intell. Mater. Syst. Struct. 1–29 (2016)

    Google Scholar 

  13. B.G. Han, J.P. Ou, Embedded piezoresistive cement-based stress/strain sensor. Sens. Actuators, A 138(2), 294–298 (2007)

    Article  Google Scholar 

  14. B.G. Han, W. Chen, J.P. Ou, Study on piezoresistivity of cement-based materials with acetylene carbon black. Acta Mater. Compo. Sinica. 25(3), 39–44 (2008)

    Google Scholar 

  15. Q.Z. Mao, B.Y. Zhao, D.R. Shen, Z.Q. Li, Resistance changement of compression sensible cement specimen under different stresses. J. Wuhan Univ. Technol.-Mater Sci. Ed. 11(3), 41–45 (1996)

    Google Scholar 

  16. J.P. Ou, B.G. Han, Piezoresistive cement-based strain sensors and self-sensing concrete components. J. Intell. Mater. Syst. Struct. 20(3), 329–336 (2009)

    Article  Google Scholar 

  17. B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review. Measurement 59, 110–128 (2015)

    Article  Google Scholar 

  18. B.G. Han, X. Yu, J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, Amsterdam, 2014)

    Google Scholar 

  19. S. Gupta, J.G. Gonzalez, K.J. Loh. Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct. Health Monit. 1–15 (2016)

    Google Scholar 

  20. M. Saafi, Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 20(39), 844–847 (2009)

    Article  Google Scholar 

  21. M. Saafi, K. Andrew, P.L. Tang, D. McGhon, S. Taylor, M. Rahman, S.T. Yang, X. Zhou, Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr. Build. Mater. 49, 46–55 (2013)

    Article  Google Scholar 

  22. B. Chen, J. Liu, Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis. Constr. Build. Mater. 22(11), 2196–2201 (2008)

    Article  Google Scholar 

  23. J. Veraagullo, V. Chozasligero, D. Portillorico, M.J. García-Casas, A. Gutiérrez-Martínez, J.M. Mieres-Royo, J. Grávalos-Moreno. Mortar and concrete reinforced with nanomaterials. NICOM3. 383–388 (2008)

    Google Scholar 

  24. N. Banthia, S. Djeridane, M. Pigeon, Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cem. Concr. Res. 22(5), 804–814 (1992)

    Article  Google Scholar 

  25. M.Q. Sun, Z.Q. Li, Q.Z. Mao, D.R. Shen, Study on the hole conduction phenomenon in carbon fiber-reinforced concrete. Cem. Concr. Res. 28(4), 549–554 (1998)

    Article  Google Scholar 

  26. P. Xie, P. Gu, J.J. Beaudoin, Electrical percolation phenomena in cement composites containing conductive fibres. J. Mater. Sci. 31(15), 4093–4097 (1996)

    Article  Google Scholar 

  27. B.G. Han, B.Z. Han, X. Yu, J.P. Ou, Ultrahigh pressure-sensitive effect induced by field emission at sharp nano-tips on the surface of spiky spherical nickel powders. Sens. Lett. 9(5), 1629–1635 (2011)

    Article  Google Scholar 

  28. S.H. Wen, D.D.L. Chung, The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement. Carbon 44(11), 2130–2138 (2006)

    Article  Google Scholar 

  29. B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. A Appl. Sci. Manuf. 79, 103–115 (2015)

    Article  Google Scholar 

  30. B.G. Han, X. Yu, J.P. Ou. Multifunctional and smart carbon nanotube reinforced cement-based materials, ed. by K. Gopalakrishnan, B. Birgisson, P. Taylor. Nanotechnology in Civil Infrastructure: A Paradigm Shift (Springer, Berlin, 2011), pp. 1–47

    Google Scholar 

  31. Y.L. Wang, X.H. Zhao, Positive and negative pressure sensitivities of carbon fiber-reinforced cement-matrix composites and their mechanism. Acta Mater. Compos. Sinica. 22(4), 40–46 (2005)

    Google Scholar 

  32. Z.M.Z.M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill, New York, 2007)

    Google Scholar 

  33. K. Chen, C. Xiong, L. Li, L. Zhou, Y. Lei, L. Dong, Conductive mechanism of antistatic poly(ethylene terephthalate)/ZnOw composites. Polym. Compos. 30(2), 226–231 (2008)

    Article  Google Scholar 

  34. A. Celzard, E. Mcrae, G. Furdin, J.F. March, Conduction mechanisms in some graphite-polymer composites: The effect of a direct-current electric field. J. Phys.: Condens. Matter. 9(10), 2225–2237 (1997)

    Google Scholar 

  35. B.G. Han, S.Q. Ding, S.W. Sun, L.Q. Zhang, J.P. Ou. Chemical modification of carbon nanotubes/nanofibers for application in cement and concrete field, ed. Vijay Kumar Thakur. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications (Taylor & Francis CRC, Abingdon, 2015) pp. 748–773

    Google Scholar 

  36. B.G. Han, X. Yu, J.P. Ou, Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 45(14), 3714–3719 (2010)

    Article  Google Scholar 

  37. C.Y. Li, T.W. Chou, Modeling of damage sensing in fiber composites using carbon nanotube networks. Compos. Sci. Technol. 68(15–16), 3373–3379 (2008)

    Article  Google Scholar 

  38. J. Xu, W.H. Zhong, W. Yao, Modeling of conductivity in carbon fiber-reinforced cement-based composite. J. Mater. Sci. 45(13), 3538–3546 (2010)

    Article  Google Scholar 

  39. D.D.L. Chung, Self-monitoring structural materials. Mater. Sci. Eng. R. 22(2), 57–78 (1998)

    Article  Google Scholar 

  40. P.W. Chen, D.D.L. Chung, Concrete as a new strain/stress sensor. Compos. B Eng. 27(1), 11–23 (1996)

    Article  Google Scholar 

  41. X.L. Fu, D.D.L. Chung, Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar. Cem. Concr. Res. 27(9), 1313–1318 (1997)

    Article  Google Scholar 

  42. S.H. Wen, D.D.L. Chung, Effects of strain and damage on strain-sensing ability of carbon fiber cement. J. Mater. Civ. Eng. 18(3), 355–360 (2006)

    Article  MathSciNet  Google Scholar 

  43. Y. Huang, B. Xiang, X. Ming, X. Fu, Y. Ge. Conductive mechanism research based on pressure-sensitive conductive composite material for flexible tactile sensing. The 2008 IEEE International Conference on Information and Automation pp. 1614–1619 (2008)

    Google Scholar 

  44. M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009)

    Article  Google Scholar 

  45. P.W. Chen, D.D.L. Chung, Carbon fiber reinforced concrete as an electrical contact material for smart structures. Smart Mater. Struct. 2(3), 181–188 (1998)

    Article  Google Scholar 

  46. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita, Y. Ohtsuka, Y. Arai, Design of intelligent materials with self-diagnosing function for preventing fatal fracture. Smart Mater. Struct. 1(4), 324–329 (1992)

    Article  Google Scholar 

  47. X.L. Fu, D.D.L. Chung, Radio-wave-reflecting concrete for lateral guidance in automatic highways. Cem. Concr. Res. 28(6), 795–801 (1998)

    Article  Google Scholar 

  48. M.Q. Sun, Z.Q. Li, Q.Z. Mao, D.R. Shen, Thermoelectric percolation phenomena in carbon fiber-reinforced concrete. Cem. Concr. Res. 28(12), 1707–1712 (1998)

    Article  Google Scholar 

  49. S.H. Wen, D.D.L. Chung, Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers. Cem. Concr. Res. 30(8), 1295–1298 (2000)

    Article  Google Scholar 

  50. M.Q. Sun, Z.Q. Li, Q.Z. Mao, D.R. Shen, A study on thermal self-monitoring of carbon fiber reinforced concrete. Cem. Concr. Res. 29(5), 769–771 (1999)

    Article  Google Scholar 

  51. X.L. Fu, D.D.L. Chung, Vibration damping admixtures for cement. Cem. Concr. Res. 1(26), 69–75 (1996)

    Article  Google Scholar 

  52. C.T. Li, J.S. Qian, Z.Q. Tang, Study on properties of smart concrete with steel slag. China Concr. Cem. Prod. 2, 5–8 (2005)

    Google Scholar 

  53. B.G. Han, Y. Yu, B.Z. Han, J.P. Ou, Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors. Sens. Actuators, A 147(2), 536–543 (2008)

    Article  Google Scholar 

  54. B.G. Han, B.Z. Han, J.P. Ou, Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity. Sens. Actuators, A 149(1), 51–55 (2009)

    Article  Google Scholar 

  55. S.H. Wen, D.D.L. Chung, Seebeck effect in carbon fiber-reinforced cement. Cem. Concr. Res. 29(12), 1989–1993 (1999)

    Article  Google Scholar 

  56. D.G. Meehan, S.K. Wang, D.D.L. Chung, Electrical-resistance-based sensing of impact damage in carbon fiber reinforced cement-based materials. J. Intell. Mater. Syst. Struct. 21(1), 83–105 (2010)

    Article  Google Scholar 

  57. J.P. Lynch, Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components. Proc. SPIE-Int. Soc. Opt. Eng. 5765, 419–429 (2005)

    Google Scholar 

  58. E. Teomete, O.I. Kocyigit, Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test. Constr. Build. Mater. 47(5), 962–968 (2013)

    Article  Google Scholar 

  59. F. Reza, J.A. Yamamuro, G.B. Batson, Electrical resistance change in compact tension specimens of carbon fiber cement composites. Cement Concr. Compos. 26(7), 873–881 (2004)

    Article  Google Scholar 

  60. W. Wang, S.G. Wu, H.Z. Dai, Fatigue behavior and life prediction of carbon fiber reinforced concrete under cyclic flexural loading. Mater. Sci. Eng., A 434(1), 347–351 (2006)

    Article  Google Scholar 

  61. L. Hong, S. Wang. Study on the stress-resistance effect of the graphite slurry infiltrated steel fiber concrete. Funct. Mater. 135–137 (2010)

    Google Scholar 

  62. B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70, 69–81 (2015)

    Article  Google Scholar 

  63. F. Sanchez, K. Sobolev, Nanotechnology in concrete-A review. Constr. Build. Mater. 24(11), 2060–2071 (2010)

    Article  Google Scholar 

  64. Q. Zhang, S.Q. Ding, S.W. Sun, B.G. Han, X. Yu, J.P. Ou. Nano-scale behavior and nano-modification of cement and concrete materials. ed. by Hershey. Advanced Research on Nanotechnology for Civil Engineering Applications (IGI Global. Anwar Khitab, Waqas Anwar, 2016) pp. 28–79

    Google Scholar 

  65. B.G. Han, K. Zhang, X. Yu, E. Kwon, J.P. Ou, Fabrication of piezoresistive CNT/CNF cementitious composites with superplasticizer as dispersant. J. Mater. Civ. Eng. 24(6), 658–665 (2011)

    Article  Google Scholar 

  66. J.L. Luo, Z.D. Duan, H. Li, The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Physica Status Solidi (a) 206(12), 2783–2790 (2009)

    Google Scholar 

  67. M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 40(7), 1052–1059 (2010)

    Article  Google Scholar 

  68. B.G. Han, X. Yu, K. Zhang, E. Kwon, J. Ou, Sensing properties of CNT-filled cement-based stress sensors. J. Civ. Struct. Health Monit. 1(1), 17–24 (2011)

    Article  Google Scholar 

  69. P. Garcés, L.G. Andión, I. De la Varga, G. Catalá, E. Zornoza, Corrosion of steel reinforcement in structural concrete with carbon material addition. Corros. Sci. 49(6), 2557–2566 (2007)

    Article  Google Scholar 

  70. D.X. Zhang, Z.H. Luo, Z.P. Liu, S.G. Wu, Sensitivity of reinforced components of CFRC. J. Harbin Inst. Technol. 36(10), 1411–1413 (2004)

    Google Scholar 

  71. R.N. Howser, H.B. Dhonde, Y.L. Mo, Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Mater. Struct. 20(8), 298–300 (2011)

    Article  Google Scholar 

  72. W. Wang, H.Z. Dai, S.G. Wu, Mechanical behavior and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading. Mater. Sci. Eng., A 479(2), 191–196 (2008)

    Article  Google Scholar 

  73. L.X. Zheng, X.H. Song, Z.Q. Li, Self-monitoring of the deformation in smart concrete structures. J. Huazhong Univ. Sci. Technol. 32(4), 30–34 (2004)

    Google Scholar 

  74. F.J. Baeza, O. Galao, E. Zornoza, P. Garcés, Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials 6(3), 841–855 (2013)

    Article  Google Scholar 

  75. K. Sett. Characterization and modeling of structural and self-monitoring behavior of fiber reinforced polymer concrete. Dissertation for the Doctor Degree, University of Houston (2003)

    Google Scholar 

  76. D.X. Zhang, S.G. Wu, B. Ma, J.H. Zhao, Sensitivities of carbon fiber reinforced concrete under bending loading. J. Jilin Univ. Technol. 4(34), 679–683 (2004)

    Google Scholar 

  77. W. Zhang, H.C. Xie, J.W. Liu, B. Shi, Experimental study on elastic stress self-monitoring of carbon fiber reinforced smart concrete beams. J. Southeast Univ. 34(5), 647–650 (2004)

    Google Scholar 

  78. L.X. Zheng, X.H. Song, Z.Q. Li, Investigation on the method of AC measurement of compression sensibility of carbon fiber cement. J. Wuhan Urban Constr. Inst. 22(2), 27–29 (2005)

    Google Scholar 

  79. D.J. Zhang, S.L. Xu, H.M. Hao, Experimental study on fracture parameters of three-point bending beam based on smart properties of CFRC. J. Hydroelectric Eng. 61(6), 1369–1375 (2008)

    Google Scholar 

  80. S.H. Wen, D.D.L. Chung, Carbon fiber-reinforced cement as a strain-sensing coating. Cem. Concr. Res. 31(4), 665–667 (2001)

    Article  Google Scholar 

  81. L.N. Huang, D.X. Zhang, S.G. Wu, G.H. Zhao, Study on pulling sensitivity character of CFRC and smart monitoring of beam specimens. J. Mater. Eng. 33(2), 26–29 (2005)

    Google Scholar 

  82. D.X. Zhang, Y.Q. Su, L.N. Huang, S.G. Wu, J.H. Zhao, Experimental research on the smart character of laminated CFRC bending test specimens. Low Temp. Archit. Technol. 103(1), 62–64 (2005)

    Google Scholar 

  83. S.G. Wu, H.Z. Dai, W. Wang, Effect of CFRC layers on the electrical properties and failure mode of RC beams strengthened with CFRC composites. Smart Mater. Struct. 16(6), 2056–2062 (2007)

    Article  Google Scholar 

  84. S. Wen, D.D.L. Chung, A comparative study of steel and carbon-fibre cement as piezoresistive strain sensors. Adv. Cem. Res. 15(3), 119–128 (2003)

    Article  Google Scholar 

  85. Y. Saez de Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys. Status Solidi Appl. Mater. 203(6), 1076–1081 (2006)

    Article  Google Scholar 

  86. R.M. Chacko, N. Banthia, A.A. Mufti, Carbon fiber reinforced cement-based sensors. Can. J. Civ. Eng. 34(3), 284–290 (2007)

    Article  Google Scholar 

  87. F. Azhari. Cement-based sensors for structural health monitoring. Dissertation for the Doctor Degree, University of British Columbia (2008)

    Google Scholar 

  88. B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembly CNT/NCB composite fillers reinforced cement-based materials with multifunctionality. Compos. A Appl. Sci. Manuf. 79, 103–115 (2015)

    Article  Google Scholar 

  89. S.F. Dong, B.G. Han, J.P. Ou, Z. Li, L.Y. Han, X. Yu, Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cem. Concr. Compos. 72, 48–65 (2016)

    Article  Google Scholar 

  90. X.M. Fan, F. Ao, M.Q. Sun, Z.Q. Li, Piezoresistivity of carbon fiber graphite cement-based composites embedded in concrete column. J. Build. Mater. 14(1), 88–91 (2011)

    Google Scholar 

  91. F. Vossoughi. Electrical resistivity of carbon fiber reinforced concrete. University of California (2004)

    Google Scholar 

  92. B. Chen, J.Y. Liu, Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis. Constr. Build. Mater. 22(11), 2196–2201 (2008)

    Article  Google Scholar 

  93. B.G. Han, K. Zhang, T. Burnham, E. Kwon, X. Yu, Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection. Smart Mater. Struct. 22(1), 15020 (2013)

    Article  Google Scholar 

  94. Z.Q. Shi, D.D.L. Chung, Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cem. Concr. Res. 29(3), 435–439 (1999)

    Article  Google Scholar 

  95. W.B. Wei. A research of the traffic vehicle-speed measuring system based on the pressure-sensitivity of CFRC. Dissertation for the Master Degree, Shantou University (2003)

    Google Scholar 

  96. H.L. Jian. Research of the traffic weighting monitoring system based on the pressure-sensitivity of CFRC. Dissertation for the Master Degree, Shantou University (2004)

    Google Scholar 

  97. Z.Q. Gong. Research of the traffic monitoring system based on the pressure-sensitivity of CFRM. Dissertation for the Master Degree, Shantou University (2007)

    Google Scholar 

  98. B.G. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 20(44), 445501 (2009)

    Article  Google Scholar 

  99. B.G. Han, K. Zhang, X. Yu, E. Kwon, J.P. Ou, Nickel particle-based self-sensing pavement for vehicle detection. Measurement 44(9), 1645–1650 (2011)

    Article  Google Scholar 

  100. V. Micro Measurements. Strain gage installations for concrete structures. Application Note TT. 2007, 611:217–220

    Google Scholar 

  101. B. Benmokrane, E. Elsalakawy, S. Elgamal, S. Goulet, Construction and Testing of an Innovative Concrete Bridge Deck Totally Reinforced with Glass FRP Bars: Val-Alain Bridge on Highway 20 East. J. Bridge Eng. 12(5), 632–645 (2007)

    Article  Google Scholar 

  102. E.G. Nawy, Concrete construction engineering handbook. Compr. Struct. Integrity. 1(1), 1–5 (2008)

    Google Scholar 

  103. P.L. Fuhr, Y.R. Huston, Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors. Smart Mater. Struct. 7(2), 217–228 (1998)

    Article  Google Scholar 

  104. L.C. Hollaway, A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 24(12), 2419–2445 (2010)

    Article  Google Scholar 

  105. K.S.C. Kuang, S.T. Quek, C.G. Koh, W.J. Cantwell, P.J. Scully, Plastic optical fibre sensors for structural health monitoring: a review of recent progress. J. Sens. 9, 13–15 (2009)

    Article  Google Scholar 

  106. K.T. Lau, C.C. Chan, L.M. Zhou, W. Jin, Strain monitoring in composite-strengthened concrete structures using optical fibre sensors. Compos. B Eng. 32(1), 33–45 (2001)

    Article  Google Scholar 

  107. I. Lee, L. Yuan, F. Ansari, H. Ding, Fiber-optic crack-tip opening displacement sensor for concrete. Cement Concr. Compos. 19(1), 59–68 (1997)

    Article  Google Scholar 

  108. T.L. Yeo, D. Eckstein, B. Mckinley, L.F. Boswell, T. Sun, K.T.V. Grattan, Technical note: Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete. Smart Mater. Struct. 15(2), 40–45 (2006)

    Article  Google Scholar 

  109. P. Childs, A.C.L. Wong, W. Terry, G.D. Peng, Measurement of crack formation in concrete using embedded optical fibre sensors and differential strain analysis. Meas. Sci. Technol. 19(6), 65301 (2008)

    Article  Google Scholar 

  110. X.T. Zou, A. Chao, Y. Tian, N. Wu, H.T. Zhang, T.Y. Yu, X.W. Wang, An experimental study on the concrete hydration process using Fabry-Perot fiber optic temperature sensors. Measurement 45(5), 1077–1082 (2012)

    Article  Google Scholar 

  111. B. Glišić. Monitoring of early and very early age deformation of concrete using fiber optic sensors. In: Proceedings of the Second Fib International Congress. pp. 5–8 (2006)

    Google Scholar 

  112. K.S.C. Kuang, W.J. Cantwell, C. Thomas, Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors. Meas. Sci. Technol. 14(2), 205–216 (2003)

    Article  Google Scholar 

  113. R. Bernini, A. Minardo, S. Ciaramella, V. Minutolo, L. Zeni, Distributed strain measurement along a concrete beam via stimulated brillouin scattering in optical fibers. Int. J. Geophys. 2011(5), 1–5 (2011)

    Article  Google Scholar 

  114. Z. Zhou, W.Q. Liu, Y. Huang, H.P. Wang, J.P. He, M.H. Huang, J.P. Ou, Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in highway pavement. Mech. Syst. Signal Process. 28(2), 36–49 (2012)

    Article  Google Scholar 

  115. D. Inaudi, E. Udd. Long-gauge structural monitoring for civil structures, in Fourth Pacific Northwest Fiber Optic Sensor Workshop pp. 93–100 (1998)

    Google Scholar 

  116. E. Udd, J.M. Seim. Static and dynamic testing of bridges and highways using long-gage fiber Bragg grating based strain sensors. SPIE—The International Society for Optical Engineering. pp. 79–86 (2000)

    Google Scholar 

  117. G. Kistera, D. Winter, Y.M. Gebremichael, J. Leighton, R.A. Badcock, P.D. Tester, S. Krishnamurthy, W.J.O. Boyle, K.T.V. Grattan, G.F. Fernando, Methodology and integrity monitoring of foundation concrete piles using Bragg grating optical fibre sensors. Eng. Struct. 29(9), 2048–2055 (2007)

    Article  Google Scholar 

  118. C.K.Y. Leung, K.T. Wan, D. Inaudi, X.Y. Bao, W. Habel, Z. Zhou, J.P. Ou, M. Ghandehari, H.C. Wu, M. Imai, Review: Optical fiber sensors for civil engineering applications. Mater. Struct. 48(4), 871–906 (2015)

    Article  Google Scholar 

  119. M. Kaya, P. Sahay, C. Wang, Reproducibly reversible fiber loop ringdown water sensor embedded in concrete and grout for water monitoring. Sensors and Actuators B: Chemical. 176(176), 803–810 (2013)

    Article  Google Scholar 

  120. K. Wan, C.K.Y. Leung, Applications of a distributed fiber optic crack sensor for concrete structures. Sens. Actuators, A 135(2), 458–464 (2007)

    Article  Google Scholar 

  121. K. Kesavan, K. Ravisankar, S. Parivallal, P. Sreeshylam, S. Sridhar, Experimental studies on fiber optic sensors embedded in concrete. Measurement 43(2), 157–163 (2010)

    Article  Google Scholar 

  122. E. El-Salakawy, B. Benmokrane, A. El-Ragaby, D. Nadeau, Field investigation on the first bridge deck slab reinforced with glass FRP bars constructed in Canada. J. Compos. Constr. 9(6), 470–479 (2005)

    Article  Google Scholar 

  123. D. Inaudi, S. Vurpillot, Monitoring of concrete bridges with long-gage fiber optic sensors. J. Intell. Mater. Syst. Struct. 10(4), 280–292 (1999)

    Article  Google Scholar 

  124. R. Maaskant, T. Alavie, R.M. Measures, G. Tadros, S.H. Rizkalla, A. Guha-Thakurta, Fiber-optic Bragg grating sensors for bridge monitoring. Cement Concr. Compos. 19(1), 21–33 (1997)

    Article  Google Scholar 

  125. M. Sun, W.J. Staszewski, R.N. Swamy, Smart sensing technologies for structural health monitoring of civil engineering structures. Adv. Civil Eng. 2010, 724962 (2010)

    Article  Google Scholar 

  126. T. Furukawa, K. Ishida, E. Fukada, Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys. 50(7), 4904–4912 (1979)

    Article  Google Scholar 

  127. Z. Zheng, Y. Qu, W. Ma, F. Hou, Electric properties and applications of ceramic–polymer composites. Acta Materiae Compositae Sinica. 15(4), 14–19 (1998)

    Google Scholar 

  128. S.W. Shin, A.R. Qureshi, J.Y. Lee, C.B. Yun, Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Mater. Struct. 17(5), 55002 (2008)

    Article  Google Scholar 

  129. Y.M. Wen, Y. Chen, P. Li, H. Guo, Smart concrete with embedded piezoelectric devices: implementation and characterization. J. Intell. Mater. Syst. Struct. 18(18), 265–274 (2007)

    Google Scholar 

  130. C.K. Soh, Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Mater. Struct. 9(4), 533–542 (2000)

    Article  Google Scholar 

  131. M. Saafi, T. Sayyah, Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers. Compos. B Eng. 32(4), 333–342 (2001)

    Article  Google Scholar 

  132. G. Song, Y.L. Mo, K. Otero, H. Gu, Health monitoring and rehabilitation of a concrete structure using intelligent materials. Smart Mater. Struct. 15(15), 309–314 (2006)

    Article  Google Scholar 

  133. X.Y. Zhao, H.N. Li, D. Du, J.L. Wang. Concrete structure monitoring based on built-in piezoelectric ceramic transducers. in The 15th International Symposium on: Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring. pp. 693208–693208-8 (2008)

    Google Scholar 

  134. D.Y. Xu. Fabrication and properties of cement based piezoelectric sensor and its application research in civil engineering fields. Dissertation for the Doctor Degree, Shandong University (2010)

    Google Scholar 

  135. Y. Yokoyama, T. Harada. Structural monitoring using piezoelectric film. in The 24th US Japan bridge engineering workshop. 245–253 (2008)

    Google Scholar 

  136. Y. Meng, W.J. Yi, Application of a PVDF-based stress gauge in determining dynamic stress-strain curves of concrete under impact testing. Smart Mater. Struct. 20(6), 65004–65010 (2011)

    Article  Google Scholar 

  137. G.B. Song, H.C. Gu, Y.L. Mo, Smart aggregates: multi-functional sensors for concrete structures-a tutorial and a review. Smart Mater. Struct. 17(3), 847–854 (2008)

    Article  Google Scholar 

  138. G.B. Song, H.C. Gu, Y.L. Mo, T.T.C. Hsu, H. Dhonde, Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 16(4), 959–968 (2007)

    Article  Google Scholar 

  139. K.K. Tseng, L.S. Wang, Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Mater. Struct. 13(5), 1017–1024 (2004)

    Article  Google Scholar 

  140. Z.X. Li, X.M. Yang, Z. Li, Application of cement-based piezoelectric sensors for monitoring traffic flows. J. Transp. Eng. 132(7), 565–573 (2006)

    Article  Google Scholar 

  141. S. Yan, W. Sun, G.B. Song, H.C. Gu, L.S. Huo, B. Liu, Y.G. Zhang, Health monitoring of reinforced concrete shear walls using smart aggregates. Smart Mater. Struct. 18(18), 3149–3160 (2009)

    Google Scholar 

  142. J.R. Zhang, Y.Y. Lu, Z.Y. Lu, C. Liu, G.X. Sun, Z.J. Li. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors. Smart Mater. Struct. 24(2):25023 (2015)

    Google Scholar 

  143. S.F. Huang, Z.G. Ye, S.D. Wang, D.Y. Xu, J. Chang, X. Cheng, Fabrication and properties of 1–3 cement based piezoelectric composites. Acta Materiae Compositae Sinica. 24(1), 122–126 (2007)

    Google Scholar 

  144. Z.Q. Liu. Study on damage self-monitoring and self-repair of SMA smart concrete beam. Dissertation for the Doctor Degree, Harbin Institute of Technology. (2006)

    Google Scholar 

  145. G.B. Song, Y.L. Mo, K. Otero, H.C. Gu. Develop intelligent reinforced concrete structures using shape memory alloys and piezoceramics. in The 3rd international conference on earthquake engineering. pp. 851–856 (2004)

    Google Scholar 

  146. L. Janke, C. Czaderski, M. Motavalli, J. Ruth, Applications of shape memory alloys in civil engineering structures-Overview, limits and new ideas. Mater. Struct. 38(5), 578–592 (2005)

    Article  Google Scholar 

  147. N. Muto, Y. Arai, S.G. Shin, H. Matsubara, H. Yanagida, M. Sugita, T. Nakatsuji, Hybrid composites with self-diagnosing function for preventing fatal fracture. Compos. Sci. Technol. 61(6), 875–883 (2001)

    Article  Google Scholar 

  148. M. Sugita, H. Yanagida, N. Muto, Materials design for self-diagnosis of fracture in CFGFRP composite reinforcement. Smart Mater. Struct. 4(1A), 52–57 (1995)

    Article  Google Scholar 

  149. C.Q. Yang, Z.S. Wu, Y.F. Zhang, Structural health monitoring of an existing PC box girder bridge with distributed HCFRP sensors in a destructive test. Smart Mater. Struct. 17(3), 4006–4032 (2008)

    Google Scholar 

  150. B. Wang, J.P. Ou, X.Y. Zhang, Z. He, Experimental research on sensing properties of CFRP bar and concrete beams reinforced with CFRP bars. J. Harbin Inst. Technol. 39(2), 220–224 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoguo Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Han, B., Zhang, L., Ou, J. (2017). Self-Sensing Concrete. In: Smart and Multifunctional Concrete Toward Sustainable Infrastructures. Springer, Singapore. https://doi.org/10.1007/978-981-10-4349-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4349-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4348-2

  • Online ISBN: 978-981-10-4349-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics