Skip to main content

Hypervalent Iodine Fluorination for Preparing Alkyl Fluorides (Stoichiometrically and Catalytically)

  • Reference work entry
  • First Online:
Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 760 Accesses

Introduction

Fluorinated hypervalent iodine (III) reagents are a century-old class of compounds undergoing a resurgence over the past few decades. The renewed interest in these compounds stems from their ability to transfer fluorine to Lewis basic reagents as though they were a source of fluoronium “F+” ion. The purpose of this chapter is to introduce the reader to this growing field of fluorination chemistry by illustrating key trends and reactivity patterns, from the first synthesis of the reagent to the most recent advancements in catalytic asymmetric fluorinations [1]. The discussion will follow the chemistry of two classes of fluorinated hypervalent iodine (III) compounds, the (difluoroiodo)arenes (1) and the fluorinated iodobenzoxole (2) (Fig. 1). While this is intended to be comprehensive, the focus will be on discussing the differing reactivity patterns induced by these compounds, as opposed to presenting an exhaustive list of all the work.

Hypervalent Iodine Fluorination for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohlhepp, S. V.; Gulder, T., Chem. Soc. Rev.2016, 45, 6270.

    CAS  PubMed  Google Scholar 

  2. (a) Weinland, R. F.; Stille, W., Chem. Ber.1901, 34, 2631; (b) Weinland, R. F.; Stille, W., Liebig Ann. Chem.1903, 328, 132.

    Google Scholar 

  3. Lemal, D. M.; Tao, J.; Murphy, G. K., Difluoroiodotoluene. In Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd: 2001.

    Google Scholar 

  4. Ye, C. F.; Twamley, B.; Shreeve, J. M., Org. Lett.2005, 7, 3961.

    CAS  PubMed  Google Scholar 

  5. Sarie, J. C.; Thiehoff, C.; Mudd, R. J.; Daniliuc, C. G.; Kehr, G.; Gilmour, R., J. Org. Chem.2017, 82, 11792.

    CAS  PubMed  Google Scholar 

  6. Legault, C. Y.; Prevost, J., Act. Cryst., Sect. E2012, 68, 1238.

    Google Scholar 

  7. Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A., J. Org. Chem.2013, 78, 6763.

    PubMed  Google Scholar 

  8. Geary, G. C.; Hope, E. G.; Singh, K.; Stuart, A. M., Chem. Commun.2013, 49, 9263.

    CAS  Google Scholar 

  9. Zhang, J.; Szabó, K. J.; Himo, F., ACS Catal.2017, 7, 1093.

    CAS  Google Scholar 

  10. Zhou, B.; Xue, X.-s.; Cheng, J.-p., Tetrahedron Lett.2017, 58, 1287.

    CAS  Google Scholar 

  11. Zhou, B.; Yan, T.; Xue, X.-S.; Cheng, J.-P., Org. Lett.2016, 18, 6128.

    CAS  PubMed  Google Scholar 

  12. Zupan, M.; Pollak, A., J. Chem. Soc., Chem. Commun.1975, 1975, 715.

    Google Scholar 

  13. The use of the M/P nomenclature for axial chirality is more convenient than the older and more complicated aR/aS definition. In addition, it avoids any confusion with centrochiral elements and it is in better agreement with the denotation for planar chirality. Detailed explanations on the M/P nomenclature can be found in (a) Hanson, K. R., J. Am. Chem. Soc.1966, 88, 2731; (b) Helmchen, G., Nomenclature and Vocabulary of Organic Stereochemistry. In Methods of Organic Chemistry, Houben-Weyl, Vol. 21a Thieme, New York: 1995; (c) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed.2005, 44, 5384.

    Google Scholar 

  14. Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K., Angew. Chem., Int. Ed.2016, 55, 413.

    CAS  Google Scholar 

  15. Yoshida, M.; Fujikawa, K.; Sato, S.; Hara, S., ARKIVOC2003, 36.

    Google Scholar 

  16. Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N., Chem. Sci.2014, 5, 2754.

    CAS  Google Scholar 

  17. Geary, G. C.; Hope, E. G.; Singh, K.; Stuart, A. M., Chem. Commun.2013, 49, 9263.

    CAS  Google Scholar 

  18. Sato, S.; Yoshida, M.; Hara, S., Synthesis2005, 2602.

    Google Scholar 

  19. Hara, S.; Nakahigashi, J.; Ishi-i, K.; Sawaguchi, M.; Sakai, H.; Fukuhara, T.; Yoneda, N., Synlett1998, 495.

    Google Scholar 

  20. Molnár, I. G.; Gilmour, R., J. Am. Chem. Soc.2016, 138, 5004.

    PubMed  Google Scholar 

  21. Banik, S. M.; Medley, J. W.; Jacobsen, E. N., J. Am. Chem. Soc.2016, 138, 5000.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Patrick, T. B.; Scheibel, J. J.; Hall, W. E.; Lee, Y. H., J. Org. Chem., 1980, 45, 4492.

    CAS  Google Scholar 

  23. Kitamura, T.; Muta, K.; Oyamada, J., J. Org. Chem., 2015, 80, 10431.

    CAS  PubMed  Google Scholar 

  24. Banik, S. M.; Medley, J. W.; Jacobsen, E. N., Science2016, 353, 51.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J., Angew. Chem., Int. Ed.2014, 53, 12897.

    CAS  Google Scholar 

  26. Hara, S.; Nakahigashi, J.; Ishi-i, K.; Fukuhara, T.; Yoneda, N., Tetrahedron Lett.1998, 39, 2589.

    CAS  Google Scholar 

  27. Zhao, Z.; Racicot, L.; Murphy, G. K., Angew. Chem., Int. Ed.2017, 56, 11620.

    CAS  Google Scholar 

  28. Sawaguchi, M.; Hara, S.; Fukuhara, T.; Yoneda, N., J. Fluorine Chem.2000, 104, 277.

    CAS  Google Scholar 

  29. Yuan, W.; Szabó, K. J., Angew. Chem. Int. Ed.2015, 54, 8533.

    CAS  Google Scholar 

  30. Ulmer, A.; Brunner, C.; Arnold, A. M.; Poethig, A.; Gulder, T., Chem. Eur. J.2016, 22, 3660.

    CAS  PubMed  Google Scholar 

  31. Yang, B.; Chansaenpak, K.; Wu, H.; Zhu, L.; Wang, M.; Li, Z.; Lu, H., Chem. Commun.2017, 53, 3497.

    CAS  Google Scholar 

  32. Geary, G. C.; Hope, E. G.; Stuart, A. M., Angew. Chem. Int. Ed.2015, 54, 14911.

    CAS  Google Scholar 

  33. Woerly, E. M.; Banik, S. M.; Jacobsen, E. N., J. Am. Chem. Soc.2016, 138, 13858.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong, W.; Feige, P.; de Haro, T.; Nevado, C., Angew. Chem., Int. Ed.2013, 52, 2469.

    CAS  Google Scholar 

  35. Ilchenko, N. O.; Hedberg, M.; Szabó, K. J., Chem. Sci.2017, 8, 1056.

    CAS  PubMed  Google Scholar 

  36. Banik, S. M.; Mennie, K. M.; Jacobsen, E. N., J. Am. Chem. Soc.2017, 139, 9152.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tao, J.; Tran, R.; Murphy, G. K., J. Am. Chem. Soc.2013, 135, 16312.

    CAS  PubMed  Google Scholar 

  38. Sinclair, G. S.; Tran, R.; Tao, J.; Hopkins, W. S.; Murphy, G. K., Eur. J. Org. Chem.2016, 2016, 4603.

    CAS  Google Scholar 

  39. Emer, E.; Twilton, J.; Tredwell, M.; Calderwood, S.; Collier, T. L.; Liegault, B.; Taillefer, M.; Gouverneur, V., Org. Lett.2014, 16, 6004.

    CAS  PubMed  Google Scholar 

  40. Zhou, Y.; Zhang, Y.; Wang, J., Org. Biomol. Chem.2016, 14, 10444.

    CAS  PubMed  Google Scholar 

  41. Zhao, Z.; Kulkarni, K. G.; Murphy, G. K., Adv. Synth. Catal.2017, 359, 2222.

    CAS  Google Scholar 

  42. Kulkarni, K. G.; Miokovic, B.; Sauder, M.; Murphy, G. K., Org. Biomol. Chem.2016, 14, 9907.

    CAS  PubMed  Google Scholar 

  43. Fuchigami, T.; Fujita, T., J. Org. Chem.1994, 59, 7190.

    CAS  Google Scholar 

  44. Arrica, M. A.; Wirth, T., Eur. J. Org. Chem.2005, 2005, 395.

    Google Scholar 

  45. Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S., Tetrahedron Lett.2003, 44, 4117.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graham K. Murphy or Tanja Gulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murphy, G.K., Gulder, T. (2020). Hypervalent Iodine Fluorination for Preparing Alkyl Fluorides (Stoichiometrically and Catalytically). In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3896-9_39

Download citation

Publish with us

Policies and ethics