Skip to main content

Fluorination of Diaryliodonium Salts for Preparing Aryl Fluorides

  • Reference work entry
  • First Online:
Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 720 Accesses

Introduction

Diaryliodonium salts are a class of hypervalent iodine (III) reagents that have been known since 1894 (Fig. 1) [14]. Although the term “salt” is commonly used, the T-shaped form shown by X-ray structures illustrates that these iodine (III) compounds have more covalent bond characteristics. “Diaryl-λ3-iodanes” is the nomenclature from IUPAC for this type of molecule [25, 36, 45, 46, 48]. Diaryliodonium salts with tetrafluoroborates, triflates, and tosylates as counter anions are frequently used due to their good solubility in general organic solvents, as well as the lack of nucleophilicity of these anions, compared with halide anion salts.

Fluorination of Diaryliodonium Salts for Preparing Aryl Fluorides, Fig. 1
figure 624 figure 624

General structure and T-shaped form of diaryliodonium salts

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BASULI, F., WU, H. & GRIFFITHS, G. L. 2011. Syntheses of meta-[18F]fluorobenzaldehyde and meta-[18F]fluorobenzyl bromide from phenyl(3-formylphenyl)iodonium salt precursors. J. Labelled Compd. Radiopharm., 54, 224–228.

    CAS  Google Scholar 

  2. BIELAWSKI, M., AILI, D. & OLOFSSON, B. 2008. Regiospecific One-Pot Synthesis of Diaryliodonium Tetrafluoroborates from Arylboronic Acids and Aryl Iodides. J. Org. Chem., 73, 4602–4607.

    CAS  PubMed  Google Scholar 

  3. BIELAWSKI, M., MALMGREN, J., PARDO, L. M., WIKMARK, Y. & OLOFSSON, B. 2014. One-Pot Synthesis and Applications of N-Heteroaryl Iodonium Salts. ChemistryOpen, 3, 19–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. CAMPBELL, M. G. & RITTER, T. 2015. Modern Carbon-Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis. Chem. Rev. (Washington, DC, U. S.), 115, 612–633.

    CAS  Google Scholar 

  5. CARRERAS, V., SANDTORV, A. H. & STUART, D. R. 2017. Synthesis of Aryl(2,4,6-trimethoxyphenyl)iodonium Trifluoroacetate Salts. J. Org. Chem., 82, 1279–1284.

    CAS  PubMed  Google Scholar 

  6. CARROLL, M. A., NAIRNE, J., SMITH, G. & WIDDOWSON, D. A. 2007a. Radical scavengers: A practical solution to the reproducibility issue in the fluoridation of diaryliodonium salts. J. Fluorine Chem., 128, 127–132.

    CAS  Google Scholar 

  7. CARROLL, M. A., NAIRNE, J. & WOODCRAFT, J. L. 2007b. Diaryliodonium salts: a solution to 3-[18F]fluoropyridine. J. Labelled Compd. Radiopharm., 50, 452–454.

    CAS  Google Scholar 

  8. CHUN, J.-H., LU, S., LEE, Y.-S. & PIKE, V. W. 2010. Fast and High-Yield Microreactor Syntheses of ortho-Substituted [18F]Fluoroarenes from Reactions of [18F]Fluoride Ion with Diaryliodonium Salts. J. Org. Chem., 75, 3332–3338.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. CHUN, J.-H., LU, S. & PIKE, V. W. 2011. Rapid and Efficient Radiosyntheses of meta-Substituted [18F]Fluoroarenes from [18F]Fluoride Ion and Diaryliodonium Tosylates within a Microreactor. Eur. J. Org. Chem., 2011, 4439–4447, S4439/1-S4439/67.

    Google Scholar 

  10. CHUN, J.-H. & PIKE, V. W. 2012. Single-Step Radiosynthesis of “18F-Labeled Click Synthons” from Azide-Functionalized Diaryliodonium Salts. Eur. J. Org. Chem., 2012, 4541–4547, S4541/1-S4541/18.

    Google Scholar 

  11. CHUN, J.-H. & PIKE, V. W. 2013. Single-step syntheses of no-carrier-added functionalized [18F]fluoroarenes as labeling synthons from diaryliodonium salts. Org. Biomol. Chem., 11, 6300–6306.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. EDWARDS, R., WESTWELL, A. D., DANIELS, S. & WIRTH, T. 2015. Convenient Synthesis of Diaryliodonium Salts for the Production of [18F]F-DOPA. Eur. J. Org. Chem., 2015, 625–630.

    Google Scholar 

  13. ERMERT, J., HOCKE, C., LUDWIG, T., GAIL, R. & COENEN, H. H. 2004. Comparison of pathways to the versatile synthon of no-carrier-added 1-bromo-4-[18F]fluorobenzene. J. Labelled Compd. Radiopharm., 47, 429–441.

    CAS  Google Scholar 

  14. HARTMANN, C. & MEYER, V. 1894. On a new class of iodine, nitrogen-free organic bases. Chem. Zentralbl., 65 Book 1, 550–551.

    Google Scholar 

  15. HELFER, A., CASTILLO MELEAN, J., ERMERT, J., INFANTINO, A. & COENEN, H. H. 2013. Bis(4-benzyloxyphenyl)iodonium salts as effective precursors for the no-carrier-added radiosynthesis of 4-[18F]fluorophenol. Appl. Radiat. Isot., 82, 264–267.

    CAS  Google Scholar 

  16. HOSSAIN, M. D., IKEGAMI, Y. & KITAMURA, T. 2006. Reaction of arenes with iodine in the presence of potassium peroxodisulfate in trifluoroacetic acid. Direct and simple synthesis of diaryliodonium triflates. J. Org. Chem., 71, 9903–9905.

    CAS  PubMed  Google Scholar 

  17. ICHIISHI, N., BROOKS, A. F., TOPCZEWSKI, J. J., RODNICK, M. E., SANFORD, M. S. & SCOTT, P. J. H. 2014. Copper-Catalyzed [18F]Fluorination of (Mesityl)(aryl)iodonium Salts. Org. Lett., 16, 3224–3227.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. ICHIISHI, N., CANTY, A. J., YATES, B. F. & SANFORD, M. S. 2013. Cu-Catalyzed Fluorination of Diaryliodonium Salts with KF. Org. Lett., 15, 5134–5137.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. JANG, K. S., JUNG, Y.-W., GU, G., KOEPPE, R. A., SHERMAN, P. S., QUESADA, C. A. & RAFFEL, D. M. 2013. 4-[18F]Fluoro-m-hydroxyphenethylguanidine: A Radiopharmaceutical for Quantifying Regional Cardiac Sympathetic Nerve Density with Positron Emission Tomography. J. Med. Chem., 56, 7312–7323.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. KIM, J., MOON, B. S., LEE, B. C., LEE, H.-Y., KIM, H.-J., CHOO, H., PAE, A. N., CHO, Y. S. & MIN, S.-J. 2017. A Potential PET Radiotracer for the 5-HT2C Receptor: Synthesis and in Vivo Evaluation of 4-(3-[18F]fluorophenethoxy)pyrimidine. ACS Chem. Neurosci., Ahead of Print.

    Google Scholar 

  21. KUIK, W.-J., KEMA, I. P., BROUWERS, A. H., ZIJLMA, R., NEUMANN, K. D., DIERCKX, R. A. J. O., DI MAGNO, S. G. & ELSINGA, P. H. 2015. In vivo biodistribution of no-carrier-added 18FDOPA, produced by a new nucleophilic substitution approach, compared with carrier-added 18FDOPA, prepared by conventional electrophilic substitution. J. Nucl. Med., 56, 106–112.

    CAS  PubMed  Google Scholar 

  22. LANCER, K. M. & WIEGAND, G. H. 1976. The ortho effect in the pyrolysis of iodonium halides. A case for a sterically controlled nucleophilic aromatic (SN) substitution reaction. J. Org. Chem., 41, 3360–4.

    CAS  Google Scholar 

  23. LIBERT, L. C., FRANCI, X., PLENEVAUX, A. R., OOI, T., MARUOKA, K., LUXEN, A. J. & LEMAIRE, C. F. 2013. Production at the Curie level of no-carrier-added 6-18F-fluoro-L-dopa. J. Nucl. Med., 54, 1154–1161.

    CAS  PubMed  Google Scholar 

  24. LINSTAD, E. J., VAVERE, A. L., HU, B., KEMPINGER, J. J., SNYDER, S. E. & DIMAGNO, S. G. 2017. Thermolysis and radiofluorination of diaryliodonium salts derived from anilines. Org. Biomol. Chem., 15, 2246–2252.

    CAS  PubMed  Google Scholar 

  25. MERRITT, E. A. & OLOFSSON, B. 2009. Diaryliodonium Salts: A Journey from Obscurity to Fame. Angew. Chem., Int. Ed., 48, 9052–9070.

    CAS  Google Scholar 

  26. MILLER, P. W., LONG, N. J., VILAR, R. & GEE, A. D. 2008. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem., Int. Ed., 47, 8998–9033.

    CAS  Google Scholar 

  27. MOON, B. S., KIL, H. S., PARK, J. H., KIM, J. S., PARK, J., CHI, D. Y., LEE, B. C. & KIM, S. E. 2011. Facile aromatic radiofluorination of [18F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org. Biomol. Chem., 9, 8346–8355.

    CAS  PubMed  Google Scholar 

  28. MU, L., MULLER HERDE, A., RUEFLI, P. M., SLADOJEVICH, F., MILICEVIC SEPHTON, S., KRAMER, S. D., THOMPSON, A. J., SCHIBLI, R., AMETAMEY, S. M. & LOCHNER, M. 2016. Synthesis and Pharmacological Evaluation of [11C]Granisetron and [18F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging. ACS Chem. Neurosci., 7, 1552–1564.

    CAS  PubMed  Google Scholar 

  29. NEUMANN, K. D., QIN, L., VAVERE, A. L., SHEN, B., MIAO, Z., CHIN, F. T., SHULKIN, B. L., SNYDER, S. E. & DI MAGNO, S. G. 2016. Efficient automated syntheses of high specific activity 6-[18F]fluorodopamine using a diaryliodonium salt precursor. J. Labelled Compd. Radiopharm., 59, 30–34.

    CAS  Google Scholar 

  30. PIKE, V. W. & AIGBIRHIO, F. I. 1995. Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts - a novel single-step route to no-carrier-added [18]fluoroarenes. J. Chem. Soc., Chem. Commun., 2215–6.

    Google Scholar 

  31. PRESHLOCK, S., TREDWELL, M. & GOUVERNEUR, V. 2016. 18F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. (Washington, DC, U. S.), 116, 719–766.

    CAS  Google Scholar 

  32. QIN, L., HU, B., NEUMANN, K. D., LINSTAD, E. J., MCCAULEY, K., VENESS, J., KEMPINGER, J. J. & DIMAGNO, S. G. 2015. A Mild and General One-Pot Synthesis of Densely Functionalized Diaryliodonium Salts. Eur. J. Org. Chem., 2015, 5919–5924.

    CAS  Google Scholar 

  33. ROSS, T. L., ERMERT, J., HOCKE, C. & COENEN, H. H. 2007. Nucleophilic 18F-Fluorination of Heteroaromatic Iodonium Salts with No-Carrier-Added [18F]Fluoride. J. Am. Chem. Soc., 129, 8018–8025.

    CAS  PubMed  Google Scholar 

  34. ROTSTEIN, B. H., STEPHENSON, N. A., VASDEV, N. & LIANG, S. H. 2014. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat. Commun., 5, 4365.

    CAS  PubMed  Google Scholar 

  35. SATYAMURTHY, N. & BARRIO, J. R. 2010. No-carrier-added nucleophilic [18F]-fluorination of aromatic compounds using phenyliodonium ylides. WO2010117435A2.

    Google Scholar 

  36. SOLDATOVA, N., POSTNIKOV, P., KUKURINA, O., ZHDANKIN, V. V., YOSHIMURA, A., WIRTH, T. & YUSUBOV, M. S. 2017. Facile One-Pot Synthesis of Diaryliodonium Salts from Arenes and Aryl Iodides with Oxone. ChemistryOpen, 6, 18–20.

    CAS  PubMed  Google Scholar 

  37. TELU, S., CHUN, J.-H., SIMEON, F. G., LU, S. & PIKE, V. W. 2011. Syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org. Biomol. Chem., 9, 6629–6638.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. TREDWELL, M. & GOUVERNEUR, V. 2012. 18F Labeling of Arenes. Angew. Chem., Int. Ed., 51, 11426–11437.

    CAS  Google Scholar 

  39. VAN DER PUY, M. 1982. Conversion of diaryliodonium salts to aryl fluorides. J. Fluorine Chem., 21, 385–92.

    Google Scholar 

  40. WANG, B., QIN, L., NEUMANN, K. D., UPPALURI, S., CERNY, R. L. & DI MAGNO, S. G. 2010. Improved Arene Fluorination Methodology for I(III) Salts. Org. Lett., 12, 3352–3355.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. WARNIER, C., LEMAIRE, C., BECKER, G., ZARAGOZA, G., GIACOMELLI, F., AERTS, J., OTABASHI, M., BAHRI, M. A., MERCIER, J., PLENEVAUX, A. & LUXEN, A. 2016. Enabling Efficient Positron Emission Tomography (PET) Imaging of Synaptic Vesicle Glycoprotein 2A (SV2A) with a Robust and One-Step Radiosynthesis of a Highly Potent 18F-Labeled Ligand ([18F]UCB-H). J. Med. Chem., 59, 8955–8966.

    CAS  PubMed  Google Scholar 

  42. WUEST, F. R., HOEHNE, A. & METZ, P. 2005. Synthesis of 18F-labeled cyclooxygenase-2 (COX-2) inhibitors via Stille reaction with 4-[18F]fluoroiodobenzene as radiotracers for positron emission tomography (PET). Org. Biomol. Chem., 3, 503–507.

    CAS  Google Scholar 

  43. WUEST, F. R. & KNIESS, T. 2003. Synthesis of 4-[18F]fluoroiodobenzene and its application in Sonogashira cross-coupling reactions. J. Labelled Compd. Radiopharm., 46, 699–713.

    CAS  Google Scholar 

  44. YAMADA, Y. & OKAWARA, M. 1972. Steric effect in the nucleophilic attack of bromide anion on diaryl- and aryl-2-thienyliodonium ions. Bull. Chem. Soc. Jap., 45, 1860–3.

    CAS  Google Scholar 

  45. YUSUBOV, M. S., MASKAEV, A. V. & ZHDANKIN, V. V. 2011. Iodonium salts in organic synthesis. ARKIVOC (Gainesville, FL, U. S.), 370–409.

    Google Scholar 

  46. YUSUBOV, M. S., SVITICH, D. Y., LARKINA, M. S. & ZHDANKIN, V. V. 2013. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in Positron Emission Tomography. ARKIVOC (Gainesville, FL, U. S.), 364–395, 32 pp.

    Google Scholar 

  47. ZHANG, M.-R., KUMATA, K. & SUZUKI, K. 2007. A practical route for synthesizing a PET ligand containing [18F]fluorobenzene using reaction of diphenyliodonium salt with [18F]F. Tetrahedron Lett., 48, 8632–8635.

    CAS  Google Scholar 

  48. ZHDANKIN, V. V. & STANG, P. J. 2008. Chemistry of polyvalent iodine. Chem Rev, 108, 5299–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. ZLATOPOLSKIY, B. D., ZISCHLER, J., KRAPF, P., ZARRAD, F., URUSOVA, E. A., KORDYS, E., ENDEPOLS, H. & NEUMAIER, B. 2015. Copper-Mediated Aromatic Radiofluorination Revisited: Efficient Production of PET Tracers on a Preparative Scale. Chem. - Eur. J., 21, 5972–5979.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchao Qu or Ximin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qu, W., Li, X. (2020). Fluorination of Diaryliodonium Salts for Preparing Aryl Fluorides. In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3896-9_12

Download citation

Publish with us

Policies and ethics