Skip to main content

Functional Salivary Gland Regeneration

  • Chapter
  • First Online:
Organ Regeneration Based on Developmental Biology
  • 1002 Accesses

Abstract

Oral health and homeostasis are maintained by the functional interactions of many organs, including the salivary glands, teeth, and tongue. Salivary gland dysfunction leads to dry mouth diseases, such as dental caries, bacterial infection, swallowing dysfunction, and reduced quality of life. The current clinical therapies for dry mouth are temporary, and they cannot repair salivary gland dysfunction. Salivary gland regenerative therapy with tissue repair and whole salivary gland replacement is a novel organ regenerative therapy. To achieve the recovery of the salivary gland function, adult tissue stem cells may be used as a cell source for salivary gland tissue repair therapies. To attain the entire salivary gland replacement therapy, which represents the next-generation regenerative therapy, we developed a novel cell manipulation method that can regenerate the ectodermal organ germ. The bioengineered salivary gland germs successfully engrafted grew in the transplantation site, generating the correct structure. The bioengineered salivary glands were able to secrete saliva into the oral cavity and improve dry mouth symptoms. In this chapter, we describe the recent progress and developmental methods for salivary gland regeneration therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aframian DJ, Palmon A (2008) Current status of the development of an artificial salivary gland. Tissue Eng Part B 14:187–198

    Article  Google Scholar 

  • Atala A (2005) Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther 5(7):879–892

    Article  CAS  Google Scholar 

  • Atkinson JC, Grisius M, Massey W (2005) Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am 49:309–326

    Article  PubMed  Google Scholar 

  • Avery JK (2002) Oral development and histology. Thieme Press, New York, pp 292–330

    Google Scholar 

  • Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310(5756):1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Bücheler M, Wirz C, Schütz A, Bootz F (2002) Tissue engineering of human salivary gland organoids. Acta Otolaryngol 122(5):541–545

    Article  PubMed  Google Scholar 

  • Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  • Cohen DE, Melton D (2011) Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet 12(4):243–252

    Article  CAS  PubMed  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Delporte C, O’Connell BC, He X, Lancaster HE, O’Connell AC, Agre P, Baum BJ (1997) Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A 94(7):3268–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denny PC, Denny PA (1999) Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec 254:408–417

    Article  CAS  PubMed  Google Scholar 

  • Edgar M, Dawes C, Mullane OD (2004) Saliva and Oral Health, 3rd edn. British Dental Association, UK

    Google Scholar 

  • Feng J, Van der Zwaag M, Stokman MA, Van Os R, Coppes RP (2009) Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol 92:466–471

    Article  CAS  PubMed  Google Scholar 

  • Fox PC (2004) Salivary enhancement therapies. Caries Res 38:241–246

    Article  PubMed  Google Scholar 

  • Froehlich DA, Pangborn RM, Whitaker JR (1987) The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion. Physiol Behav 41(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Harunaga J, Hsu JC, Yamada KM (2011) Dynamics of salivary gland morphogenesis. J Dent Res 90(9):1070–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Goldsmith CM, Marmary Y, Wellner RB, Parlow AF, Nieman LK, Baum BJ (1998) Systemic action of human growth hormone following adenovirus-mediated gene transfer to rat submandibular glands. Gene Ther 5(4):537–541

    Article  PubMed  Google Scholar 

  • Horie K, Kagami H, Hiramatsu Y, Hata K, Shigetomi T, Ueda M (1996) Selected salivary-gland cell culture and the effects of isoproterenol, vasoactive intestinal polypeptide and substance P. Arch Oral Biol 41(3):243–252

    Article  CAS  PubMed  Google Scholar 

  • Hsu JC, Yamada KM (2010) Salivary gland branching morphogenesis -- Recent progress and future opportunities. Int J Oral Sci 2(3):117–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihrler S, Zietz C, Sendelhofert A, Lang S, Blasenbreu-Vogt S, Löhrs U (2002) A morphogenetic concept of salivary duct regeneration and metaplasia. Virchows Arch 440(5):519–526

    Article  PubMed  Google Scholar 

  • Jaskoll T, Melnick M (2004) Embryonic salivary gland branching morphogenesis. Madame Curie:13–14

    Google Scholar 

  • Jeong J, Baek H, Kim YJ, Choi Y, Lee H, Lee E, Kim ES, Hah JH, Kwon TK, Choi IJ, Kwon H (2013) Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med 45:e58

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagami H, O’Connell BC, Baum BJ (1996) Evidence for the systemic delivery of a transgene product from salivary glands. Hum Gene Ther 7(17):2177–2184

    Article  CAS  PubMed  Google Scholar 

  • Kagami H, Wang S, Hai B (2008) Restoring the function of salivary glands. Oral Dis 14:15–24

    CAS  PubMed  Google Scholar 

  • Kawakami M, Ishikawa H, Tachibana T, Tanaka A, Mataga I (2013) Functional transplantation of salivary gland cells differentiated from mouse early ES cells in vitro. Hum Cell 26:80–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi T, Takao T, Fujita K, Taniguchi H (2006) Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun 340(2):544–552

    Article  CAS  PubMed  Google Scholar 

  • Knosp WM, Knox SM, Hoffman MP (2012) Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol 1(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Knox S, Hoffman MP (2008) Salivary gland development. Blackwell Publications, Ames, IA

    Google Scholar 

  • Lamy E, Graca G, Costa GD, Franco C, Silva FC, Baptista ES, Coelho AV (2010) Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci 8:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280(4):86–89

    Article  CAS  PubMed  Google Scholar 

  • Lombaert IM, Hoffman MP. (2013) Stem Cells in Salivary Gland Development and Regeneration. Stem Cells in Craniofacial Development and Regeneration. Hoboken, New Jersey, USA; Wiley-Blackwell. pp.271-284.

    Google Scholar 

  • Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3:e2063

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombaert I, Movahednia MM, Adine C (2016) Ferreira JN. Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells, Salivary Gland Regeneration

    Google Scholar 

  • Madeira C, Santhagunam A, Salgueiro JB, Cabral JM (2015) Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol 33(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Man YG, Ball WD, Marchetti L, Hand AR (2011) Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec 263(2):202–214

    Article  Google Scholar 

  • Matsuo R (2000) Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med 11:216–229

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K (2004) M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558:561–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H, Hoque AT, Sun D, Herscher LL, Braddon VR, Delporte C, Baum BJ (1999) Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther 6(6):505–513

    Article  PubMed  Google Scholar 

  • Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, Nakajima K, Hirayama M, Tachikawa T, Tsuji T (2013) Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun 4:2498

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Yamashita K, Niikura M, Nakajima K, Toyoshima KE, Oshima M, Tsuji T (2014) Saliva secretion in engrafted mouse bioengineered salivary glands using taste stimulation. J Prosthodont Res 58(1):17–25

    Article  PubMed  Google Scholar 

  • Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74(7):349–364

    Article  CAS  PubMed  Google Scholar 

  • Peters SB, Naim N, Nelson DA, Mosier AP, Cady NC, Larsen M (2014) Biocompatible tissue scaffold compliance promotes salivary gland morphogenesis and differentiation. Tissue Eng Part A 20:1632–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Farach-Carson MC (2010) Mining the extracellular matrix for tissue engineering applications. Regen Med 5:961–970

    Article  CAS  PubMed  Google Scholar 

  • Proctor GB, Carpenter GH (2014) Salivary secretion: mechanism and neural regulation. Monogr Oral Sci 24:14–29

    Article  PubMed  Google Scholar 

  • Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J, Rohwedel J, Huss R, Brandau S, Wollenberg B, Lang S (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17:509–518

    Article  CAS  PubMed  Google Scholar 

  • Sakai T (2009) Epithelial branching morphogenesis of salivary gland: exploration of new functional regulators. J Med Investig 56(Suppl):234–238

    Article  Google Scholar 

  • Saleh J, Figueiredo MA, Cherubini K, Salum FG (2015) Salivary hypofunction: an update on aetiology, diagnosis and therapeutics. Arch Oral Biol 60(2):242–255

    Article  PubMed  Google Scholar 

  • Sasano T, Satoh-Kuriwada S, Shoji N, Sekine-Hayakawa Y, Kawai M, Uneyama H (2010) Application of umami taste stimulation to remedy hypogeusia based on reflex salivation. Biol Pharm Bull 33(11):1791–1795

    Article  CAS  PubMed  Google Scholar 

  • Segers VFM, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  CAS  PubMed  Google Scholar 

  • Ship JA, Pillemer SR, Baum BJ (2002) (2002) Xerostomia and the geriatric patient. J Am Geriatr Soc 50:535–543

    Article  PubMed  Google Scholar 

  • Sreebny LM, Schwartz SS (1997) A reference guide to drugs and dry mouth--2nd edition. Gerodontology 14(1):33–47

    Article  CAS  PubMed  Google Scholar 

  • Sugito T, Kagami H, Hata K, Nishiguchi H, Ueda M (2004) Transplantation of cultured salivary gland cells into an atrophic salivary gland. Cell Transplant 13(6):691–699

    Article  CAS  PubMed  Google Scholar 

  • Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, Cotrim AP, Mezey E, Tran SD (2011) Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol 43:80–87

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Zhu J, Yang X, Wang S (2006) Growth of miniature pig parotid cells on biomaterials in vitro. Arch Oral Biol 51(5):351–358

    Article  CAS  PubMed  Google Scholar 

  • Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E, Swaim WD, Gerstenhaber JA, Bryant JM, Zheng C, Goldsmith CM, Kok MR, Wellner RB, Baum BJ (2005) Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue Eng 11(1-2):172–181

    Article  CAS  PubMed  Google Scholar 

  • Tran SD, Liu Y, Xia D, Maria OM, Khalili S, Wang RW-J, Quan V-H, Hu S, Seuntjens J (2013) Paracrine Effects of Bone Marrow Soup Restore Organ Function, Regeneration, and Repair in Salivary Glands Damaged by Irradiation. PLoS One 8(4):e61632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker AS, Miletich I (2010) Salivary glands; Development, adaptations, and Disease. Karger, London, UK

    Book  Google Scholar 

  • Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: Successes and barriers. Int J Radiat Oncol Biol Phys 78:983–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Voutetakis A, Bossis I, Kok MR, Zhang W, Wang J, Cotrim AP, Zheng C, Chiorini JA, Nieman LK, Baum BJ (2005) Salivary glands as a potential gene transfer target for gene therapeutics of some monogenetic endocrine disorders. J Endocrinol 185(3):363–372

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Larsen M, Hoffman MP, Yamada KM (2007) Self-Organization and Branching Morphogenesis of Primary Salivary Epithelial Cells. Tissue Eng 13(4):721–735

    Article  CAS  PubMed  Google Scholar 

  • Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo C, Vines JB, Alexander G, Murdock K, Hwang P, Jun HW. (2014) Adult stem cells and tissue engineering strategies for salivary gland regeneration: a review. Biomater Res 18:9.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Kiban (A) from the Ministry of Education, Culture, Sports, Science and Technology (no. 25242041). `by Organ Technologies Inc.

Conflict of Interest

M. Ogawa and T. Tsuji have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ogawa, M., Tsuji, T. (2017). Functional Salivary Gland Regeneration. In: Tsuji, T. (eds) Organ Regeneration Based on Developmental Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3768-9_7

Download citation

Publish with us

Policies and ethics