Skip to main content

Participation of AMPK in the Control of Skeletal Muscle Mass

  • Chapter
  • First Online:
The Plasticity of Skeletal Muscle

Abstract

The skeletal muscle plays crucial roles in whole-body glucose, lipid, and energy metabolism and in locomotive functions. The maintenance of the skeletal muscle mass is regulated by protein turnover: the balance between protein synthesis and protein degradation. The metabolic sensor 5′ AMP-activated protein kinase (AMPK) has important functions in the maintenance of cellular homeostasis and modulates glucose, lipid, and protein metabolism in the skeletal muscle. Recent studies warrant consideration of AMPK as a crucial regulator of muscle mass and suggest that AMPK controls skeletal muscle hypertrophy and atrophy by suppressing protein synthesis and promoting protein degradation via various signaling pathways. In addition, AMPK may stimulate myogenesis and regeneration of the skeletal muscle from injury. Conversely, the lack of AMPK activation probably restricts protein turnover during aging, potentially contributing to muscle loss. Taken together, these data indicate that AMPK triggers accelerated muscle turnover by regulating protein metabolism and/or myogenesis and thereby facilitates muscle mass homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132(4):657–666

    Article  CAS  PubMed  Google Scholar 

  3. Barre L, Richardson C, Hirshman MF, Brozinick J, Fiering S, Kemp BE, Goodyear LJ, Witters LA (2007) Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation. Am J Physiol Endocrinol Metab 292(3):E802–E811

    Article  CAS  PubMed  Google Scholar 

  4. Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Belleau R, Maltais F (1998) Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158(2):629–634

    Article  CAS  PubMed  Google Scholar 

  5. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001a) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708

    Article  CAS  PubMed  Google Scholar 

  6. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001b) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019

    Article  CAS  PubMed  Google Scholar 

  7. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277(27):23977–23980

    Article  CAS  PubMed  Google Scholar 

  8. Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, Pellegrino MA (2012) The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 590(20):5211–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  10. Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, Green AE, Kemp BE, Hawke TJ, Schertzer JD, Steinberg GR (2015) AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 21(6):883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cannavino J, Brocca L, Sandri M, Grassi B, Bottinelli R, Pellegrino MA (2015) The role of alterations in mitochondrial dynamics and PGC-1alpha over-expression in fast muscle atrophy following hindlimb unloading. J Physiol 593(8):1981–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlson CA, Kim KH (1973) Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248(1):378–380

    CAS  PubMed  Google Scholar 

  13. Chen T, Li Z, Zhang Y, Feng F, Wang X, Wang X, Shen QW (2015) Muscle-selective knockout of AMPKalpha2 does not exacerbate diet-induced obesity probably related to altered myokines expression. Biochem Biophys Res Commun 458(3):449–455

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Ye J, Cao L, Zhang Y, Xia W, Zhu D (2010) Myostatin regulates glucose metabolism via the AMP-activated protein kinase pathway in skeletal muscle cells. Int J Biochem Cell Biol 42(12):2072–2081

    Article  CAS  PubMed  Google Scholar 

  15. Chokroverty S, Reyes MG, Rubino FA, Tonaki H (1977) The syndrome of diabetic amyotrophy. Ann Neurol 2(3):181–194

    Article  CAS  PubMed  Google Scholar 

  16. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385

    Article  CAS  PubMed  Google Scholar 

  17. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA (1998) Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273(52):35347–35354

    Article  CAS  PubMed  Google Scholar 

  18. Csibi A, Leibovitch MP, Cornille K, Tintignac LA, Leibovitch SA (2009) MAFbx/Atrogin-1 controls the activity of the initiation factor eIF3-f in skeletal muscle atrophy by targeting multiple C-terminal lysines. J Biol Chem 284(7):4413–4421

    Article  CAS  PubMed  Google Scholar 

  19. Das AK, Yang QY, Fu X, Liang JF, Duarte MS, Zhu MJ, Trobridge GD, Du M (2012) AMP-activated protein kinase stimulates myostatin expression in C2C12 cells. Biochem Biophys Res Commun 427(1):36–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies SP, Sim AT, Hardie DG (1990) Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem 187(1):183–190

    Article  CAS  PubMed  Google Scholar 

  21. Dodd SL, Hain B, Senf SM, Judge AR (2009) Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy. FASEB J 23(10):3415–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Egawa T, Goto A, Ohno Y, Yokoyama S, Ikuta A, Suzuki M, Sugiura T, Ohira Y, Yoshioka T, Hayashi T, Goto K (2015) Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice. Am J Physiol Endocrinol Metab 309(7):E651–E662

    Article  CAS  PubMed  Google Scholar 

  23. Egawa T, Ohno Y, Goto A, Ikuta A, Suzuki M, Ohira T, Yokoyama S, Sugiura T, Ohira Y, Yoshioka T, Goto K (2014a) AICAR-induced activation of AMPK negatively regulates myotube hypertrophy through the HSP72-mediated pathway in C2C12 skeletal muscle cells. Am J Physiol Endocrinol Metab 306(3):E344–E354

    Article  CAS  PubMed  Google Scholar 

  24. Egawa T, Ohno Y, Goto A, Sugiura T, Ohira Y, Yoshioka T, Hayashi T, Goto K (2016) Caffeine affects myotube size as well as regulates protein degradation and protein synthesis pathways in C2C12 skeletal muscle cells. J Caffeine Res 6:88

    Article  CAS  Google Scholar 

  25. Egawa T, Tsuda S, Oshima R, Goto K, Hayashi T (2014b) Activation of 5′AMP-activated protein kinase in skeletal muscle by exercise and phytochemicals. J Phys Fitness Sports Med 3(1):55–64

    Article  Google Scholar 

  26. Eijnde BO, Derave W, Wojtaszewski JF, Richter EA, Hespel P (2005) AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation. J Appl Physiol (1985) 98(4):1228–1233

    Article  CAS  Google Scholar 

  27. Fiedler M, Zierath JR, Selen G, Wallberg-Henriksson H, Liang Y, Sakariassen KS (2001) 5-aminoimidazole-4-carboxy-amide-1-beta-D-ribofuranoside treatment ameliorates hyperglycaemia and hyperinsulinaemia but not dyslipidaemia in KKAy-CETP mice. Diabetologia 44(12):2180–2186

    Article  CAS  PubMed  Google Scholar 

  28. Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461(3):325–335

    Article  CAS  PubMed  Google Scholar 

  29. Francetic T, Li Q (2011) Skeletal myogenesis and Myf5 activation. Transcription 2(3):109–114

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fu X, Zhao JX, Liang J, Zhu MJ, Foretz M, Viollet B, Du M (2013a) AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. Am J Physiol Cell Physiol 305(8):C887–C895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu X, Zhao JX, Zhu MJ, Foretz M, Viollet B, Dodson MV, Du M (2013b) AMP-activated protein kinase alpha1 but not alpha2 catalytic subunit potentiates myogenin expression and myogenesis. Mol Cell Biol 33(22):4517–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM, Goodyear LJ (2005) AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280(47):39033–39041

    Article  CAS  PubMed  Google Scholar 

  33. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB (2007) Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol 582(Pt 2):813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14(5):661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Roves PM, Osler ME, Holmstrom MH, Zierath JR (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 283(51):35724–35734

    Article  CAS  PubMed  Google Scholar 

  37. Goldspink DF, Cox VM, Smith SK, Eaves LA, Osbaldeston NJ, Lee DM, Mantle D (1995) Muscle growth in response to mechanical stimuli. Am J Phys 268(2 Pt 1):E288–E297

    CAS  Google Scholar 

  38. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064

    Article  PubMed  Google Scholar 

  39. Gordon SE, Lake JA, Westerkamp CM, Thomson DM (2008) Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass? Exerc Sport Sci Rev 36(4):179–186

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goto K, Ohno Y, Goto A, Ikuta A, Suzuki M, Ohira T, Tsuchiya N, Nishizawa S, Koya T, Egawa T, Sugiura T, Ohira Y, Yoshioka T (2012) Some aspects of heat stress on the plasticity of skeletal muscle cells. J Phys Fitness Sports Med 1(2):197–204

    Article  Google Scholar 

  41. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282(41):30107–30119

    Article  CAS  PubMed  Google Scholar 

  42. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han B, Zhu MJ, Ma C, Du M (2007) Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle. Appl Physiol Nutr Metab 32(6):1115–1123

    Article  CAS  PubMed  Google Scholar 

  44. Hanna JS (2015) Sarcopenia and critical illness: a deadly combination in the elderly. JPEN J Parenter Enteral Nutr 39(3):273–281

    Article  PubMed  Google Scholar 

  45. Hardie DG, Carling D (1997) The AMP-activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem 246(2):259–273

    Article  CAS  PubMed  Google Scholar 

  46. Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase–development of the energy sensor concept. J Physiol 574(Pt 1):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887

    Article  CAS  PubMed  Google Scholar 

  49. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2(1):9–19

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000) Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49(4):527–531

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47(8):1369–1373

    CAS  PubMed  Google Scholar 

  52. Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, Graves LM (2005) Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol (1985) 99(6):2181–2188

    Article  CAS  Google Scholar 

  53. Holmes B, Dohm GL (2004) Regulation of GLUT4 gene expression during exercise. Med Sci Sports Exerc 36(7):1202–1206

    Article  CAS  PubMed  Google Scholar 

  54. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, Lee JS, Sahyoun NR, Visser M, Kritchevsky SB, Health ABCS (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 87(1):150–155

    CAS  PubMed  Google Scholar 

  55. Hulmi JJ, Silvennoinen M, Lehti M, Kivela R, Kainulainen H (2012) Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab 302(3):E307–E315

    Article  CAS  PubMed  Google Scholar 

  56. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280(32):29060–29066

    Article  CAS  PubMed  Google Scholar 

  57. Hutber CA, Hardie DG, Winder WW (1997) Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Phys 272(2 Pt 1):E262–E266

    CAS  Google Scholar 

  58. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    Article  CAS  PubMed  Google Scholar 

  59. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  60. Iseli TJ, Oakhill JS, Bailey MF, Wee S, Walter M, van Denderen BJ, Castelli LA, Katsis F, Witters LA, Stapleton D, Macaulay SL, Michell BJ, Kemp BE (2008) AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267. J Biol Chem 283(8):4799–4807

    Article  CAS  PubMed  Google Scholar 

  61. Iseli TJ, Walter M, van Denderen BJ, Katsis F, Witters LA, Kemp BE, Michell BJ, Stapleton D (2005) AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186–270). J Biol Chem 280(14):13395–13400

    Article  CAS  PubMed  Google Scholar 

  62. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104(29):12017–12022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812

    Article  CAS  PubMed  Google Scholar 

  64. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25

    Article  CAS  PubMed  Google Scholar 

  65. Kano Y, Poole DC, Sudo M, Hirachi T, Miura S, Ezaki O (2011) Control of microvascular PO(2) kinetics following onset of muscle contractions: role for AMPK. Am J Physiol Regul Integr Comp Physiol 301(5):R1350–R1357

    Article  CAS  PubMed  Google Scholar 

  66. Katta A, Kakarla SK, Manne ND, Wu M, Kundla S, Kolli MB, Nalabotu SK, Blough ER (2012) Diminished muscle growth in the obese Zucker rat following overload is associated with hyperphosphorylation of AMPK and dsRNA-dependent protein kinase. J Appl Physiol (1985) 113(3):377–384

    Article  CAS  Google Scholar 

  67. Klaude M, Fredriksson K, Tjader I, Hammarqvist F, Ahlman B, Rooyackers O, Wernerman J (2007) Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin Sci (Lond) 112(9):499–506

    Article  CAS  Google Scholar 

  68. Krawiec BJ, Nystrom GJ, Frost RA, Jefferson LS, Lang CH (2007) AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am J Physiol Endocrinol Metab 292(6):E1555–E1567

    Article  CAS  PubMed  Google Scholar 

  69. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985) 92(5):2177–2186

    Article  CAS  Google Scholar 

  70. Kukreti H, Amuthavalli K, Harikumar A, Sathiyamoorthy S, Feng PZ, Anantharaj R, Tan SL, Lokireddy S, Bonala S, Sriram S, McFarlane C, Kambadur R, Sharma M (2013) Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem 288(9):6663–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem 282(6):4102–4112

    Article  CAS  PubMed  Google Scholar 

  72. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840

    Article  CAS  PubMed  Google Scholar 

  73. Lantier L, Mounier R, Leclerc J, Pende M, Foretz M, Viollet B (2010) Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J 24(9):3555–3561

    Article  CAS  PubMed  Google Scholar 

  74. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee D, Goldberg A (2011) Atrogin1/MAFbx: what atrophy, hypertrophy, and cardiac failure have in common. Circ Res 109(2):123–126

    Article  CAS  PubMed  Google Scholar 

  76. Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS One 5(11):e15394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lee K, Ochi E, Song H, Nakazato K (2015) Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage. Biochem Biophys Res Commun 466(3):289–294

    Article  CAS  PubMed  Google Scholar 

  78. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    Article  CAS  PubMed  Google Scholar 

  79. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl) 86(10):1113–1126

    Article  CAS  Google Scholar 

  80. Liu J, Peng Y, Cui Z, Wu Z, Qian A, Shang P, Qu L, Li Y, Liu J, Long J (2012) Depressed mitochondrial biogenesis and dynamic remodeling in mouse tibialis anterior and gastrocnemius induced by 4-week hindlimb unloading. IUBMB Life 64(11):901–910

    Article  CAS  PubMed  Google Scholar 

  81. Liu J, Peng Y, Wang X, Fan Y, Qin C, Shi L, Tang Y, Cao K, Li H, Long J, Liu J (2016) Mitochondrial dysfunction launches dexamethasone-induced skeletal muscle atrophy via AMPK/FOXO3 signaling. Mol Pharm 13(1):73–84

    Article  CAS  PubMed  Google Scholar 

  82. Liu Y, Gampert L, Nething K, Steinacker JM (2006) Response and function of skeletal muscle heat shock protein 70. Front Biosci 11:2802–2827

    Article  CAS  PubMed  Google Scholar 

  83. Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6(2):233–244

    Article  CAS  PubMed  Google Scholar 

  84. Mak KL, To RQ, Kong Y, Konieczny SF (1992) The MRF4 activation domain is required to induce muscle-specific gene expression. Mol Cell Biol 12(10):4334–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515

    Article  CAS  PubMed  Google Scholar 

  86. Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52(7):1409–1418

    Article  CAS  PubMed  Google Scholar 

  87. McBride A, Ghilagaber S, Nikolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9(1):23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514

    Article  CAS  PubMed  Google Scholar 

  89. McGee SL, Mustard KJ, Hardie DG, Baar K (2008) Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol 586(6):1731–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90

    Article  CAS  PubMed  Google Scholar 

  91. Miura S, Kai Y, Kamei Y, Bruce CR, Kubota N, Febbraio MA, Kadowaki T, Ezaki O (2009) Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Am J Physiol Endocrinol Metab 296(1):E47–E55

    Article  CAS  PubMed  Google Scholar 

  92. Miyabara EH, Nascimento TL, Rodrigues DC, Moriscot AS, Davila WF, AitMou Y, deTombe PP, Mestril R (2012) Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy. Pflugers Arch 463(5):733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miyazaki M (2013) Growth factor-dependent and independent regulation of skeletal muscle mass – Is IGF-1 necessary for skeletal muscle hypertrophy? J Phys Fitness Sports Med 2(1):101–106

    Article  Google Scholar 

  94. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  95. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  96. Morris CA, Morris LD, Kennedy AR, Sweeney HL (2005) Attenuation of skeletal muscle atrophy via protease inhibition. J Appl Physiol (1985) 99(5):1719–1727

    Article  CAS  Google Scholar 

  97. Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39(8):643–662

    Article  PubMed  Google Scholar 

  98. Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Foretz M, Viollet B (2011) Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10(16):2640–2646

    Article  CAS  PubMed  Google Scholar 

  99. Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Pende M, Daegelen D, Sakamoto K, Foretz M, Viollet B (2009) Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. FASEB J 23(7):2264–2273

    Article  CAS  PubMed  Google Scholar 

  100. Mounier R, Theret M, Arnold L, Cuvellier S, Bultot L, Goransson O, Sanz N, Ferry A, Sakamoto K, Foretz M, Viollet B, Chazaud B (2013) AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18(2):251–264

    Article  CAS  PubMed  Google Scholar 

  101. Mourkioti F, Rosenthal N (2008) NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med (Berl) 86(7):747–759

    Article  CAS  Google Scholar 

  102. Mu J, Barton ER, Birnbaum MJ (2003) Selective suppression of AMP-activated protein kinase in skeletal muscle: update on ‘lazy mice’. Biochem Soc Trans 31(Pt 1):236–241

    Article  CAS  PubMed  Google Scholar 

  103. Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7(5):1085–1094

    Article  CAS  PubMed  Google Scholar 

  104. Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782(12):730–743

    Article  CAS  PubMed  Google Scholar 

  105. Musi N, Goodyear LJ (2006) Insulin resistance and improvements in signal transduction. Endocrine 29(1):73–80

    Article  CAS  PubMed  Google Scholar 

  106. Nakano M, Hamada T, Hayashi T, Yonemitsu S, Miyamoto L, Toyoda T, Tanaka S, Masuzaki H, Ebihara K, Ogawa Y, Hosoda K, Inoue G, Yoshimasa Y, Otaka A, Fushiki T, Nakao K (2006) alpha2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Metabolism 55(3):300–308

    Article  CAS  PubMed  Google Scholar 

  107. Nakashima K, Yakabe Y (2007) AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 71(7):1650–1656

    Article  CAS  PubMed  Google Scholar 

  108. Narici MV, de Boer MD (2011) Disuse of the musculo-skeletal system in space and on earth. Eur J Appl Physiol 111(3):403–420

    Article  CAS  PubMed  Google Scholar 

  109. O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–16097

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ost M, Werner F, Dokas J, Klaus S, Voigt A (2014) Activation of AMPKalpha2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS One 9(4):e94689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ozaki H, Abe T, Mikesky AE, Sakamoto A, Machida S, Naito H (2015) Physiological stimuli necessary for muscle hypertrophy. J Phys Fit Sports Med 4(1):43–51

    Article  Google Scholar 

  112. Pang T, Xiong B, Li JY, Qiu BY, Jin GZ, Shen JK, Li J (2007) Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits. J Biol Chem 282(1):495–506

    Article  CAS  PubMed  Google Scholar 

  113. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  CAS  PubMed  Google Scholar 

  114. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW (2002) Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol (1985) 92(6):2475–2482

    Article  CAS  Google Scholar 

  115. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  116. Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, Kumar A (2012) The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 32(7):1248–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191(7):1395–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pedersen BK (2007) IL-6 signalling in exercise and disease. Biochem Soc Trans 35(Pt 5):1295–1297

    Article  CAS  PubMed  Google Scholar 

  119. Perdiguero E, Sousa-Victor P, Ballestar E, Munoz-Canoves P (2009) Epigenetic regulation of myogenesis. Epigenetics 4(8):541–550

    Article  CAS  PubMed  Google Scholar 

  120. Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:D750–D767

    Article  CAS  PubMed  Google Scholar 

  121. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  122. Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Bechet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D (2011) Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 25(11):3790–3802

    Article  CAS  PubMed  Google Scholar 

  123. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303(1):E31–E39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23(20):7230–7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Riedl I, Osler ME, Bjornholm M, Egan B, Nader GA, Chibalin AV, Zierath JR (2016) AMPKgamma3 is dispensable for skeletal muscle hypertrophy induced by functional overload. Am J Physiol Endocrinol Metab 310:E461. ajpendo 00387 02015

    Google Scholar 

  126. Ringholm S, Bienso RS, Kiilerich K, Guadalupe-Grau A, Aachmann-Andersen NJ, Saltin B, Plomgaard P, Lundby C, Wojtaszewski JF, Calbet JA, Pilegaard H (2011) Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab 301(4):E649–E658

    Article  CAS  PubMed  Google Scholar 

  127. Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ (2007) Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56(8):2062–2069

    Article  CAS  PubMed  Google Scholar 

  128. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71(22):4361–4371

    Article  CAS  PubMed  Google Scholar 

  129. Saccone V, Puri PL (2010) Epigenetic regulation of skeletal myogenesis. Organogenesis 6(1):48–53

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sakamoto K, Goransson O, Hardie DG, Alessi DR (2004) Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287(2):E310–E317

    Article  CAS  PubMed  Google Scholar 

  131. Salt I, Celler JW, Hawley SA, Prescott A, Woods A, Carling D, Hardie DG (1998) AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J 334(Pt 1):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sanchez AM, Candau RB, Bernardi H (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71(9):1657–1671

    Article  CAS  PubMed  Google Scholar 

  133. Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H, Candau R (2012) AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J Cell Biochem 113(2):695–710

    Article  CAS  PubMed  Google Scholar 

  134. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296(6):C1248–C1257

    Article  CAS  PubMed  Google Scholar 

  135. Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL (2007) Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol (1985) 102(4):1702–1707

    Article  CAS  Google Scholar 

  136. Senf SM, Dodd SL, Judge AR (2010) FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Physiol Cell Physiol 298(1):C38–C45

    Article  CAS  PubMed  Google Scholar 

  137. Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22(11):3836–3845

    Article  CAS  PubMed  Google Scholar 

  138. Senf SM, Howard TM, Ahn B, Ferreira LF, Judge AR (2013) Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS One 8(4):e62687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S (2014) Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 32(11):2893–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shang L, Chen S, Du F, Li S, Zhao L, Wang X (2011) Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 108(12):4788–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Singh K, Dilworth FJ (2013) Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J 280(17):3991–4003

    Article  CAS  PubMed  Google Scholar 

  142. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271(2):611–614

    Article  CAS  PubMed  Google Scholar 

  143. Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345(Pt 3):437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  PubMed  Google Scholar 

  145. Tadaishi M, Miura S, Kai Y, Kawasaki E, Koshinaka K, Kawanaka K, Nagata J, Oishi Y, Ezaki O (2011) Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1alpha mRNA: a role of beta(2)-adrenergic receptor activation. Am J Physiol Endocrinol Metab 300(2):E341–E349

    Article  CAS  PubMed  Google Scholar 

  146. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    Article  CAS  PubMed  Google Scholar 

  147. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243

    Article  CAS  PubMed  Google Scholar 

  148. Thomas MM, Wang DC, D’Souza DM, Krause MP, Layne AS, Criswell DS, O’Neill HM, Connor MK, Anderson JE, Kemp BE, Steinberg GR, Hawke TJ (2014) Muscle-specific AMPK beta1beta2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. FASEB J 28(5):2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thomson DM, Gordon SE (2005) Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. J Appl Physiol (1985) 98(2):557–564

    Article  CAS  Google Scholar 

  150. Thomson DM, Gordon SE (2006) Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol 574(Pt 1):291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Thomson DM, Hancock CR, Evanson BG, Kenney SG, Malan BB, Mongillo AD, Brown JD, Hepworth S, Fillmore N, Parcell AC, Kooyman DL, Winder WW (2010) Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice. J Appl Physiol (1985) 108(6):1775–1785

    Article  CAS  PubMed Central  Google Scholar 

  152. Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280(4):2847–2856

    Article  CAS  PubMed  Google Scholar 

  153. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2(11):862–871

    Article  CAS  PubMed  Google Scholar 

  154. Tong JF, Yan X, Zhao JX, Zhu MJ, Nathanielsz PW, Du M (2011) Metformin mitigates the impaired development of skeletal muscle in the offspring of obese mice. Nutr Diabetes 1:e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tong JF, Yan X, Zhu MJ, Du M (2009) AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J Cell Biochem 108(2):458–468

    Article  CAS  PubMed  Google Scholar 

  156. Toyoda T, Hayashi T, Miyamoto L, Yonemitsu S, Nakano M, Tanaka S, Ebihara K, Masuzaki H, Hosoda K, Inoue G, Otaka A, Sato K, Fushiki T, Nakao K (2004) Possible involvement of the alpha1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab 287(1):E166–E173

    Article  CAS  PubMed  Google Scholar 

  157. Toyoda T, Tanaka S, Ebihara K, Masuzaki H, Hosoda K, Sato K, Fushiki T, Nakao K, Hayashi T (2006) Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle. Am J Physiol Endocrinol Metab 290(3):E583–E590

    Article  CAS  PubMed  Google Scholar 

  158. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296(6):C1258–C1270

    Article  CAS  PubMed  Google Scholar 

  159. Troncoso R, Paredes F, Parra V, Gatica D, Vasquez-Trincado C, Quiroga C, Bravo-Sagua R, Lopez-Crisosto C, Rodriguez AE, Oyarzun AP, Kroemer G, Lavandero S (2014) Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle 13(14):2281–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE, Witters LA, Ruderman NB (1997) Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem 272(20):13255–13261

    Article  CAS  PubMed  Google Scholar 

  161. Vigelso A, Gram M, Dybboe R, Kuhlman AB, Prats C, Greenhaff PL, Constantin-Teodosiu D, Birk JB, Wojtaszewski J, Dela F, Helge JW (2016) The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate intensity exercise in human skeletal muscle. J Physiol 594:2339–2358

    Article  CAS  PubMed  Google Scholar 

  162. Wall BT, Dirks ML, van Loon LJ (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12(4):898–906

    Article  CAS  PubMed  Google Scholar 

  163. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20(16):4370–4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang XH, Mitch WE (2014) Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10(9):504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang Y, Pessin JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16(3):243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Williamson DL, Butler DC, Alway SE (2009) AMPK inhibits myoblast differentiation through a PGC-1alpha-dependent mechanism. Am J Physiol Endocrinol Metab 297(2):E304–E314

    Article  CAS  PubMed  Google Scholar 

  167. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Phys 270(2 Pt 1):E299–E304

    CAS  Google Scholar 

  168. Wirth M, Joachim J, Tooze SA (2013) Autophagosome formation–the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 23(5):301–309

    Article  CAS  PubMed  Google Scholar 

  169. Witczak CA, Sharoff CG, Goodyear LJ (2008) AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell Mol Life Sci 65(23):3737–3755

    Article  CAS  PubMed  Google Scholar 

  170. Wojtaszewski JF, Birk JB, Frosig C, Holten M, Pilegaard H, Dela F (2005) 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol 564(Pt 2):563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2(1):21–33

    Article  CAS  PubMed  Google Scholar 

  172. Wu CL, Cornwell EW, Jackman RW, Kandarian SC (2014) NF-kappaB but not FoxO sites in the MuRF1 promoter are required for transcriptional activation in disuse muscle atrophy. Am J Physiol Cell Physiol 306(8):C762–C767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yeh LA, Lee KH, Kim KH (1980) Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem 255(6):2308–2314

    CAS  PubMed  Google Scholar 

  174. Yoo Y-M, Park JH, Seo D-H, Eom S, Jung YJ, Kim T-J, Han T-Y, Kim HS (2015) Activation of mTOR for the loss of skeletal muscle in a hindlimb-suspended rat model. Int J Precis Eng Man 16(5):1003–1010

    Article  Google Scholar 

  175. Zachariah Tom R, Garcia-Roves PM, Sjogren RJ, Jiang LQ, Holmstrom MH, Deshmukh AS, Vieira E, Chibalin AV, Bjornholm M, Zierath JR (2014) Effects of AMPK activation on insulin sensitivity and metabolism in leptin-deficient ob/ob mice. Diabetes 63(5):1560–1571

    Article  PubMed  CAS  Google Scholar 

  176. Zhao JX, Yan X, Tong JF, Means WJ, McCormick RJ, Zhu MJ, Du M (2010) Mouse AMP-activated protein kinase gamma3 subunit R225Q mutation affecting mouse growth performance when fed a high-energy diet. J Anim Sci 88(4):1332–1340

    Article  CAS  PubMed  Google Scholar 

  177. Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, Dohm GL (2001) Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol (1985) 91(3):1073–1083

    CAS  Google Scholar 

  178. Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, Underwood KR, Xiao Y, Hess BW, Ford SP, Nathanielsz PW, Du M (2008) AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J Physiol 586(10):2651–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by Grants-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows (12 J03899) and Grants-in-Aid for Scientific Research from the JSPS (26560371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Egawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Egawa, T. (2017). Participation of AMPK in the Control of Skeletal Muscle Mass. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics