Skip to main content

System Analysis

  • Chapter
  • First Online:

Abstract

Accelerated carbonation may include a large amount of energy requirements and the high costs. The challenges encountered are to accelerate the reaction and utilize the heat of reaction to maximize the overall capture capacity and minimize energy demand, as well as to determine the optimal operating conditions. As a result, significant technological breakthroughs, such as reactor design, waste-to-resource supply chain, and system optimization, are needed before deployment can be considered. In addition, it is important to evaluate greenhouse gas emission reduction by geographic region, engineering performance, environmental benefit, and economic viability for decision making. Therefore, in this chapter, the methodologies and tools pertaining to the geospatial analysis, response surface analysis, life cycle assessment, and cost–benefit analysis are illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li S, Dragicevic S, Castro FA, Sester M, Winter S, Coltekin A, Pettit C, Jiang B, Haworth J, Stein A, Cheng T (2016) Geospatial big data handling theory and methods: a review and research challenges. ISPRS J Photogramm Remote Sens 115:119–133. doi:10.1016/j.isprsjprs.2015.10.012

    Article  Google Scholar 

  2. Lee J-G, Kang M (2015) Geospatial big data: challenges and opportunities. Big Data Res 2(2):74–81. doi:10.1016/j.bdr.2015.01.003

    Article  Google Scholar 

  3. Wang J, Ma Y, Ouyang L, Tu Y (2016) A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability. Eur J Oper Res 249(1):231–237. doi:10.1016/j.ejor.2015.08.033

    Article  Google Scholar 

  4. Pan SY, Chen YH, Chen CD, Shen AL, Lin M, Chiang PC (2015) High-gravity carbonation process for enhancing CO2 fixation and utilization exemplified by the steelmaking industry. Environ Sci Technol 49(20):12380–12387. doi:10.1021/acs.est.5b02210

    Article  Google Scholar 

  5. Odeh NA, Cockerill TT (2008) Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy 36(1):367–380. doi:10.1016/j.enpol.2007.09.026

    Article  Google Scholar 

  6. Marx J, Schreiber A, Zapp P, Haines M, Hake JF, Gale J (2011) Environmental evaluation of CCS using life cycle assessment—a synthesis report. Energy Procedia 4:2448–2456

    Article  Google Scholar 

  7. de Haes HAU, Heijungs R (2007) Life-cycle assessment for energy analysis and management. Appl Energy 84(7–8):817–827

    Article  Google Scholar 

  8. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2013) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Ruimte en Milieu, The Netherlands

    Google Scholar 

  9. MHSPE (2000) Eco-indicator 99 manual for designers. Ministry of Housing, Spatial Planning and the Environment, The Netherlands

    Google Scholar 

  10. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330. doi:10.1007/bf02978505

    Article  Google Scholar 

  11. Koornneed J, Nieuwlaar E (2009) Environmental life cycle assessment of CO2 sequestration through enhanced weathering of olivine. Working paper

    Google Scholar 

  12. IEA (2013) Mineralisation—carbonation and enhanced weathering. International Energy Agency

    Google Scholar 

  13. Giannoulakis S, Volkart K, Bauer C (2014) Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation. Int J Greenhouse Gas Control 21:140–157. doi:10.1016/j.ijggc.2013.12.002

    Article  Google Scholar 

  14. Chang EE, Pan S-Y, Chen Y-H, Chu H-W, Wang C-F, Chiang P-C (2011) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114. doi:10.1016/j.jhazmat.2011.08.006

    Article  Google Scholar 

  15. Park A, Fan L (2004) Mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59(22–23):5241–5247. doi:10.1016/j.ces.2004.09.008

    Article  Google Scholar 

  16. Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour Conserv Recycl 48(4):301–314. doi:10.1016/j.resconrec.2006.03.003

    Article  Google Scholar 

  17. Hasanbeigi A, Price L, Lin E (2012) Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renew Sustain Energy Rev 16(8):6220–6238. doi:10.1016/j.rser.2012.07.019

    Article  Google Scholar 

  18. Tomás RAF, Ramôa Ribeiro F, Santos VMS, Gomes JFP, Bordado JCM (2010) Assessment of the impact of the European CO2 emissions trading scheme on the Portuguese chemical industry. Energy Policy 38(1):626–632. doi:10.1016/j.enpol.2009.06.066

    Article  Google Scholar 

  19. Lee D-H (2016) Cost-benefit analysis, LCOE and evaluation of financial feasibility of full commercialization of biohydrogen. Int J Hydrogen Energy 41(7):4347–4357. doi:10.1016/j.ijhydene.2015.09.071

    Article  Google Scholar 

  20. EU Commission (2012) Delegated Regulation (EU) no. 244/2012. Offic J Eur Commun

    Google Scholar 

  21. Araújo C, Almeida M, Bragança L, Barbosa JA (2016) Cost-benefit analysis method for building solutions. Appl Energy 173:124–133. doi:10.1016/j.apenergy.2016.04.005

    Article  Google Scholar 

  22. Xu F-L, Zhao S-S, Dawson RW, Hao J-Y, Zhang Y, Tao S (2006) A triangle model for evaluating the sustainability status and trends of economic development. Ecol Model 195(3–4):327–337. doi:10.1016/j.ecolmodel.2005.11.023

    Article  Google Scholar 

  23. Zhang J, Yang G, Pu L, Peng B (2014) Trends and spatial distribution characteristics of sustainability in Eastern Anhui Province, China. Sustainability 6(12):8398–8414. doi:10.3390/su6128398

    Article  Google Scholar 

  24. Bond FC (1961) Crushing and grinding calculations. Part 1. Br Chem Eng 6:378–385

    Google Scholar 

  25. Hukki RT (1961) Proposal for a solomonic settlement between the theories of von Rittinger, Kick, and Bond. Translation. Soc Mining Eng AIME 220:403–408

    Google Scholar 

  26. Ipek H, Ucbas Y, Hosten C (2005) The bond work index of mixtures of ceramic raw materials. Miner Eng 18(9):981–983. doi:10.1016/j.mineng.2004.12.014

    Article  Google Scholar 

  27. Ozkahraman HT (2005) A meaningful expression between bond work index, grindability index and friability value. Miner Eng 18(10):1057–1059. doi:10.1016/j.mineng.2004.12.016

    Article  Google Scholar 

  28. Magdalinovic N, Trumic M, Trumic G, Magdalinovic S, Trumic M (2012) Determination of the Bond work index on samples of non-standard size. Int J Miner Process 114–117:48–50. doi:10.1016/j.minpro.2012.10.002

    Article  Google Scholar 

  29. Gent M, Menendez M, Toraño J, Torno S (2012) A correlation between Vickers hardness indentation values and the bond work index for the grinding of brittle minerals. Powder Technol 224:217–222. doi:10.1016/j.powtec.2012.02.056

    Article  Google Scholar 

  30. Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784. doi:10.1016/j.energy.2008.01.005

    Article  Google Scholar 

  31. Khoo HH, Tan RBH (2006) Life cycle investigation of CO2 recovery and sequestration. Environ Sci Technol 40(12):4016–4024

    Article  Google Scholar 

  32. von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6(9):2721. doi:10.1039/c3ee41151f

    Article  Google Scholar 

  33. von der Assen N, Voll P, Peters M, Bardow A (2014) Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem Soc Rev 43(23):7982–7994. doi:10.1039/c3cs60373c

    Article  Google Scholar 

  34. Von der Assen N, Lorente Lafuente AM, Peters M, Bardow A (2015) Environmental assessment of CO2 capture and utilisation. In: Styring P, Quadrelli EA, Armstrong K (eds) Carbon dioxide utilisation. Elsevier, New York

    Google Scholar 

  35. Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55. doi:10.1016/j.resconrec.2011.09.003

    Article  Google Scholar 

  36. Yi Q, Feng J, Wu Y, Li W (2014) 3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system. Energy 66:285–294. doi:10.1016/j.energy.2014.01.053

    Article  Google Scholar 

  37. Silvestre JD, de Brito J, Pinheiro MD (2013) From the new European Standards to an environmental, energy and economic assessment of building assemblies from cradle-to-cradle (3E-C2C). Energy Build 64:199–208. doi:10.1016/j.enbuild.2013.05.001

    Article  Google Scholar 

  38. Dalkey N, Helmer O (1963) An experimental application of the DELPHI method to the use of experts. Manage Sci 9(3):458–467. doi:10.1287/mnsc.9.3.458

    Article  Google Scholar 

  39. Galo JJM, Macedo MNQ, Almeida LAL, Lima ACC (2014) Criteria for smart grid deployment in Brazil by applying the Delphi method. Energy 70:605–611. doi:10.1016/j.energy.2014.04.033

    Article  Google Scholar 

  40. Al-Saleh YM, Vidican G, Natarajan L, Theeyattuparampil VV (2012) Carbon capture, utilisation and storage scenarios for the Gulf Cooperation Council region: a Delphi-based foresight study. Futures 44(1):105–115. doi:10.1016/j.futures.2011.09.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). System Analysis. In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_9

Download citation

Publish with us

Policies and ethics