Skip to main content

Runx Genes in Breast Cancer and the Mammary Lineage

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

A full understanding of RUNX gene function in different epithelial lineages has been thwarted by the lethal phenotypes observed when constitutively knocking out these mammalian genes. However temporal expression of the Runx genes throughout the different phases of mammary gland development is indicative of a functional role in this tissue. A few studies have emerged describing how these genes impact on the fate of mammary epithelial cells by regulating lineage differentiation and stem/progenitor cell potential, with implications for the transformed state. The importance of the RUNX/CBFβ core factor binding complex in breast cancer has very recently been highlighted with both RUNX1 and CBFβ appearing in a comprehensive gene list of predicted breast cancer driver mutations. Nonetheless, the evidence to date shows that the RUNX genes can have dualistic outputs with respect to promoting or constraining breast cancer phenotypes, and that this may be aligned to individual subtypes of the clinical disease. We take this opportunity to review the current literature on RUNX and CBFβ in the normal and neoplastic mammary lineage while appreciating that this is likely to be the tip of the iceberg in our knowledge.

Nicholas Rooney and Alessandra I. Riggio contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bai, J., Yong, H. M., Chen, F. F., Song, W. B., Li, C., Liu, H., & Zheng, J. N. (2013). RUNX3 is a prognostic marker and potential therapeutic target in human breast cancer. Journal of Cancer Research and Clinical Oncology, 139, 1813–1823.

    Article  CAS  PubMed  Google Scholar 

  • Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486, 405–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes, G. L., Hebert, K. E., Kamal, M., Javed, A., Einhorn, T. A., Lian, J. B., et al. (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Research, 64, 4506–4513.

    Article  CAS  PubMed  Google Scholar 

  • Blyth, K., Cameron, E. R., & Neil, J. C. (2005). The RUNX genes: Gain or loss of function in cancer. Nature Reviews. Cancer, 5, 376–387.

    Article  CAS  PubMed  Google Scholar 

  • Blyth, K., Vaillant, F., Jenkins, A., Mcdonald, L., Pringle, M. A., Huser, C., et al. (2010). Runx2 in normal tissues and cancer cells: A developing story. Blood Cells, Molecules & Diseases, 45, 117–123.

    Article  CAS  Google Scholar 

  • Bonewald, L. F., & Johnson, M. L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone, 42, 606–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone, S. D., Baumgartner, K. B., Baumgartner, R. N., Connor, A. E., Pinkston, C. M., John, E. M., et al. (2013). Associations between genetic variants in the TGF-beta signaling pathway and breast cancer risk among Hispanic and non-Hispanic white women. Breast Cancer Research and Treatment, 141, 287–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne, G., Dragon, J. A., Hong, D., Messier, T. L., Gordon, J. A., Farina, N. H., et al. (2016). MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumour Biology, 37(7), 8825–8839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne, G., Taipaleenmaki, H., Bishop, N. M., Madasu, S. C., Shaw, L. M., Van Wijnen, A. J., et al. (2015). Runx1 is associated with breast cancer progression in MMTV-PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. Journal of Cellular Physiology, 230, 2522–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusgard, J. L., Choe, M., Chumsri, S., Renoud, K., Mackerell Jr., A. D., Sudol, M., & Passaniti, A. (2015). RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget, 6, 28132–28150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas, N. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490, 61–70.

    Article  CAS  Google Scholar 

  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2, 401–404.

    Article  PubMed  Google Scholar 

  • Chen, L. F. (2012). Tumor suppressor function of RUNX3 in breast cancer. Journal of Cellular Biochemistry, 113, 1470–1477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Salto-Tellez, M., Palanisamy, N., Ganesan, K., Hou, Q., Tan, L. K., et al. (2007). Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes, Chromosomes & Cancer, 46, 288–301.

    Article  CAS  Google Scholar 

  • Chimge, N. O., Baniwal, S. K., Little, G. H., Chen, Y. B., Kahn, M., Tripathy, D., et al. (2011). Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Research, 13, R127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimge, N. O., Baniwal, S. K., Luo, J., Coetzee, S., Khalid, O., Berman, B. P., et al. (2012). Opposing effects of Runx2 and estradiol on breast cancer cell proliferation: in vitro identification of reciprocally regulated gene signature related to clinical letrozole responsiveness. Clinical Cancer Research, 18, 901–911.

    Article  CAS  PubMed  Google Scholar 

  • Chimge, N. O., & Frenkel, B. (2013). The RUNX family in breast cancer: Relationships with estrogen signaling. Oncogene, 32, 2121–2130.

    Article  CAS  PubMed  Google Scholar 

  • Chimge, N. O., Little, G. H., Baniwal, S. K., Adisetiyo, H., Xie, Y., Zhang, T., et al. (2016). RUNX1 prevents oestrogen-mediated AXIN1 suppression and beta-catenin activation in ER-positive breast cancer. Nature Communications, 7, 10751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., et al. (2015). Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 163, 506–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Solal, K. A., Boregowda, R. K., & Lasfar, A. (2015). RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Molecular Cancer, 14, 137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colombo, P. E., Milanezi, F., Weigelt, B., & Reis-Filho, J. S. (2011). Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Research, 13, 212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornen, S., Guille, A., Adelaide, J., Addou-Klouche, L., Finetti, P., Saade, M. R., et al. (2014). Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PloS One, 9, e81843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486, 346–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das, K., Leong, D. T., Gupta, A., Shen, L., Putti, T., Stein, G. S., et al. (2009). Positive association between nuclear Runx2 and oestrogen-progesterone receptor gene expression characterises a biological subtype of breast cancer. European Journal of Cancer, 45, 2239–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gendi, S. M., & Mostafa, M. F. (2015). Runx2 expression as a potential prognostic marker in invasive ductal breast carcinoma. Pathology Oncology Research, 22(3), 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., et al. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486, 353–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto, H., Shiojiri, S., Hoshi, K., Furuichi, T., Fukuyama, R., Yoshida, C. A., et al. (2003). Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2−/− mice by RANKL transgene. The Journal of Biological Chemistry, 278, 23971–23977.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, N., Mcdonald, L., Morris, J. S., Cameron, E. R., & Blyth, K. (2013). RUNX2 in mammary gland development and breast cancer. Journal of Cellular Physiology, 228, 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, N., Mohammed, Z. M., Nixon, C., Mason, S. M., Mallon, E., Mcmillan, D. C., et al. (2014). Expression of RUNX1 correlates with poor patient prognosis in triple negative breast cancer. PloS One, 9, e100759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrari, N., Riggio, A. I., Mason, S., Mcdonald, L., King, A., Higgins, T., et al. (2015). Runx2 contributes to the regenerative potential of the mammary epithelium. Scientific Reports, 5, 15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14, 518–527.

    Article  CAS  PubMed  Google Scholar 

  • Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England Journal of Medicine, 363, 1938–1948.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6, l1.

    Article  CAS  Google Scholar 

  • Goh, Y. M., Cinghu, S., Hong, E. T., Lee, Y. S., Kim, J. H., Jang, J. W., et al. (2010). Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. The Journal of Biological Chemistry, 285, 10122–10129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennighausen, L., & Robinson, G. W. (2005). Information networks in the mammary gland. Nature Reviews. Molecular Cell Biology, 6, 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-Andre, V., Sigova, A. A., et al. (2013). Super-enhancers in the control of cell identity and disease. Cell, 155, 934–947.

    Article  CAS  PubMed  Google Scholar 

  • Horsfield, J. A., Anagnostou, S. H., Hu, J. K., Cho, K. H., Geisler, R., Lieschke, G., et al. (2007). Cohesin-dependent regulation of Runx genes. Development, 134, 2639–2649.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H., Xiao, G., Shapiro, D., et al. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene, 31, 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, K. T., Han, W., Bae, J. Y., Hwang, S. E., Shin, H. J., Lee, J. E., et al. (2007). Downregulation of the RUNX3 gene by promoter hypermethylation and hemizygous deletion in breast cancer. Journal of Korean Medical Science, 22, S24–S31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inman, C. K., Li, N., & Shore, P. (2005). Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Molecular Cell. Biology, 25, 3182–3193.

    Article  CAS  Google Scholar 

  • Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. The Journal of Biological Chemistry, 278, 48684–48689.

    Article  CAS  PubMed  Google Scholar 

  • Inman, J. L., Robertson, C., Mott, J. D., & Bissell, M. J. (2015). Mammary gland development: Cell fate specification, stem cells and the microenvironment. Development, 142, 1028–1042.

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y., Bae, S. C., & Chuang, L. S. (2015). The RUNX family: Developmental regulators in cancer. Nature Reviews. Cancer, 15, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Janes, K. A. (2011). RUNX1 and its understudied role in breast cancer. Cell Cycle, 10, 3461–3465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed, A., Barnes, G. L., Pratap, J., Antkowiak, T., Gerstenfeld, L. C., Van Wijnen, A. J., et al. (2005). Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 1454–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., Tong, D., Lou, G., Zhang, Y., & Geng, J. (2008). Expression of RUNX3 gene, methylation status and clinicopathological significance in breast cancer and breast cancer cell lines. Pathobiology, 75, 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Kadota, M., Yang, H. H., Gomez, B., Sato, M., Clifford, R. J., Meerzaman, D., et al. (2010). Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PloS One, 5, e9201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., et al. (2010). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466, 869–873.

    Article  CAS  PubMed  Google Scholar 

  • Karn, T., Pusztai, L., Holtrich, U., Iwamoto, T., Shiang, C. Y., Schmidt, M., et al. (2011). Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures. PloS One, 6, e28403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrick, H., Regan, J. L., Magnay, F. A., Grigoriadis, A., Mitsopoulos, C., Zvelebil, M., & Smalley, M. J. (2008). Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics, 9, 591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalid, O., Baniwal, S. K., Purcell, D. J., Leclerc, N., Gabet, Y., Stallcup, M. R., et al. (2008). Modulation of Runx2 activity by estrogen receptor-alpha: implications for osteoporosis and breast cancer. Endocrinology, 149, 5984–5995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. Y., Lee, H. J., Hwang, K. S., Lee, M., Kim, J. W., Bang, Y. J., & Kang, G. H. (2004). Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Laboratory Investigation, 84, 479–484.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Choi, J. K., Cinghu, S., Jang, J. W., Lee, Y. S., Li, Y. H., et al. (2009). Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. Journal of Cellular Biochemistry, 107, 557–565.

    Article  CAS  PubMed  Google Scholar 

  • Kouros-Mehr, H., & Werb, Z. (2006). Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Developmental Dynamics, 235, 3404–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawetz, R., Wu, Y. E., Rancourt, D. E., & Matyas, J. (2009). Osteoblasts suppress high bone turnover caused by osteolytic breast cancer in-vitro. Experimental Cell Research, 315, 2333–2342.

    Article  CAS  PubMed  Google Scholar 

  • Lau, Q. C., Raja, E., Salto-Tellez, M., Liu, Q., Ito, K., Inoue, M., et al. (2006). RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Research, 66, 6512–6520.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., & Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121, 2750–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong, D. T., Lim, J., Goh, X., Pratap, J., Pereira, B. P., Kwok, H. S., et al. (2010). Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Research, 12, R89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levanon, D., Bernstein, Y., Negreanu, V., Bone, K. R., Pozner, A., Eilam, R., et al. (2011). Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Molecular Medicine, 3, 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X. Q., Du, X., Li, D. M., Kong, P. Z., Sun, Y., Liu, P. F., et al. (2015a). ITGBL1 Is a Runx2 transcriptional target and promotes breast cancer bone metastasis by activating the TGFbeta signaling pathway. Cancer Research, 75, 3302–3313.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Guo, X., Wu, Y., Li, S., Yan, J., Peng, L., et al. (2015b). Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. Breast Cancer Research and Treatment, 149, 767–779.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. N., Lee, W. W., Wang, C. Y., Chao, T. H., Chen, Y., & Chen, J. H. (2005). Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene, 24, 8277–8290.

    Article  CAS  PubMed  Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., Bauer, O., Hantisteanu, S., Dicken, J., & Groner, Y. (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochimica et Biophysica Acta, 1855, 131–143.

    CAS  PubMed  Google Scholar 

  • Macias, H., & Hinck, L. (2012). Mammary gland development. Wiley Interdiscip Rev Dev Biol, 1, 533–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcdonald, L., Ferrari, N., Terry, A., Bell, M., Mohammed, Z. M., Orange, C., et al. (2014). RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Disease Models & Mechanisms, 7, 525–534.

    Article  CAS  Google Scholar 

  • Mcewan, M. V., Eccles, M. R., & Horsfield, J. A. (2012). Cohesin is required for activation of MYC by estradiol. PloS One, 7, e49160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Villanueva, D., Deng, W., Lopez-Camacho, C., & Shore, P. (2010). The Runx transcriptional co-activator, CBFbeta, is essential for invasion of breast cancer cells. Molecular Cancer, 9, 171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendoza-Villanueva, D., Zeef, L., & Shore, P. (2011). Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFbeta-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Research, 13, R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraja, G. M., Othman, M., Fox, B. P., Alsaber, R., Pellegrino, C. M., Zeng, Y., et al. (2006). Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene, 25, 2328–2338.

    Article  CAS  PubMed  Google Scholar 

  • Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L. B., Martin, S., Wedge, D. C., Van Loo, P., Ju, Y. S., Smid, M., Brinkman, A. B., Morganella, S., Aure, M. R., Lingjærde, O. C., Langerød, A., Ringnér, M., Ahn, S.-M., Boyault, S., Brock, J. E., Broeks, A., Butler, A., Desmedt, C., Dirix, L., Dronov, S., Fatima, A., Foekens, J. A., Gerstung, M., Hooijer, G. K. J., Jang, S. J., Jones, D. R., Kim, H.-Y., King, T. A., Krishnamurthy, S., Lee, H. J., Lee, J.-Y., Li, Y., Mclaren, S., Menzies, A., Mustonen, V., O’meara, S., Pauporté, I., Pivot, X., Purdie, C. A., Raine, K., Ramakrishnan, K., Rodríguez-González, F. G., Romieu, G., Sieuwerts, A. M., Simpson, P. T., Shepherd, R., Stebbings, L., Stefansson, O. A., Teague, J., Tommasi, S., Treilleux, I., Van Den Eynden, G. G., Vermeulen, P., Vincent-Salomon, A., Yates, L., Caldas, C., Veer, L. V. T., Tutt, A., Knappskog, S., Tan, B. K. T., Jonkers, J., Borg, Å., Ueno, N. T., Sotiriou, C., Viari, A., Futreal, P. A., Campbell, P. J., Span, P. N., Van Laere, S., Lakhani, S. R., Eyfjord, J. E., Thompson, A. M., Birney, E., Stunnenberg, H. G., Van De Vijver, M. J., Martens, J. W. M., Børresen-Dale, A.-L., Richardson, A. L., Kong, G., Thomas, G. & Stratton, M. R. 2016. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 534(7605), 47–54. Advance online publication. doi: 10.1038/nature17676.

  • Onodera, Y., Miki, Y., Suzuki, T., Takagi, K., Akahira, J., Sakyu, T., et al. (2010). Runx2 in human breast carcinoma: Its potential roles in cancer progression. Cancer Science, 101, 2670–2675.

    Article  CAS  PubMed  Google Scholar 

  • Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89, 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Owens, T. W., Rogers, R. L., Best, S. A., Ledger, A., Mooney, A. M., Ferguson, A., et al. (2014). Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Research, 74, 5277–5286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pande, S., Browne, G., Padmanabhan, S., Zaidi, S. K., Lian, J. B., Van Wijnen, A. J., et al. (2013). Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. Journal of Cellular Physiology, 228, 1784–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. Y., Kwon, H. J., Lee, H. E., Ryu, H. S., Kim, S. W., Kim, J. H., et al. (2011). Promoter CpG island hypermethylation during breast cancer progression. Virchows Archiv, 458, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Pratap, J., Lian, J. B., Javed, A., Barnes, G. L., Van Wijnen, A. J., Stein, J. L., & Stein, G. S. (2006). Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Reviews, 25, 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Pratap, J., Wixted, J. J., Gaur, T., Zaidi, S. K., Dobson, J., Gokul, K. D., et al. (2008). Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Research, 68, 7795–7802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Imbalzano, K. M., Underwood, J. M., Cohet, N., Gokul, K., Akech, J., et al. (2009). Ectopic runx2 expression in mammary epithelial cells disrupts formation of normal acini structure: Implications for breast cancer progression. Cancer Research, 69, 6807–6814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Lian, J. B., & Stein, G. S. (2011). Metastatic bone disease: Role of transcription factors and future targets. Bone, 48, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33, 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Recouvreux, M. S., Grasso, E. N., Echeverria, P. C., Rocha-Viegas, L., Castilla, L. H., Schere-Levy, C., et al. (2016). RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes. Oncotarget, 7, 6552–6565.

    PubMed  Google Scholar 

  • Richert, M. M., Schwertfeger, K. L., Ryder, J. W., & Anderson, S. M. (2000). An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 5, 227–241.

    Article  CAS  PubMed  Google Scholar 

  • Rody, A., Karn, T., Liedtke, C., Pusztai, L., Ruckhaeberle, E., Hanker, L., et al. (2011). A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Research, 13, R97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheitz, C. J., Lee, T. S., Mcdermitt, D. J., & Tumbar, T. (2012). Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. The EMBO Journal, 31, 4124–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, D., Schwalie, P. C., Ross-Innes, C. S., Hurtado, A., Brown, G. D., Carroll, J. S., et al. (2010). A CTCF-independent role for cohesin in tissue-specific transcription. Genome Research, 20, 578–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab, M., Praml, C., & Amler, L. C. (1996). Genomic instability in 1p and human malignancies. Genes, Chromosomes & Cancer, 16, 211–229.

    Article  CAS  Google Scholar 

  • Shore, P. (2005). A role for Runx2 in normal mammary gland and breast cancer bone metastasis. Journal of Cellular Biochemistry, 96, 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Sokol, E. S., Sanduja, S., Jin, D. X., Miller, D. H., Mathis, R. A., & Gupta, P. B. (2015). Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation. PLoS Computational Biology, 11, e1004161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stender, J. D., Kim, K., Charn, T. H., Komm, B., Chang, K. C., Kraus, W. L., et al. (2010). Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Molecular Cell. Biology, 30, 3943–3955.

    Article  CAS  Google Scholar 

  • Subramaniam, M. M., Chan, J. Y., Soong, R., Ito, K., Ito, Y., Yeoh, K. G., et al. (2009). RUNX3 inactivation by frequent promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression. Breast Cancer Research and Treatment, 113, 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Supernat, A., Lapinska-Szumczyk, S., Sawicki, S., Wydra, D., Biernat, W., & Zaczek, A. J. (2012). Deregulation of RAD21 and RUNX1 expression in endometrial cancer. Oncology Letters, 4, 727–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, M., Shigematsu, H., Shames, D. S., Sunaga, N., Takahashi, T., Shivapurkar, N., et al. (2005). DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. British Journal of Cancer, 93, 1029–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahirov, T. H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 104, 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Taipaleenmaki, H., Browne, G., Akech, J., Zustin, J., Van Wijnen, A. J., Stein, J. L., et al. (2015). Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Research, 75, 1433–1444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torre, L. A., Siegel, R. L., Ward, E. M., & Jemal, A. (2016). Global cancer incidence and mortality rates and trends--An update. Cancer Epidemiology, Biomarkers & Prevention, 25, 16–27.

    Article  Google Scholar 

  • Van ‘T Veer, L. J., Dai, H., Van de Vijver, M. J., He, Y. D., Hart, A. A., Bernards, R., & Friend, S. H. (2003). Expression profiling predicts outcome in breast cancer. Breast Cancer Research, 5, 57–58.

    Article  PubMed  Google Scholar 

  • Van Agthoven, T., Sieuwerts, A. M., Meijer, D., Meijer-Van Gelder, M. E., Van Agthoven, T. L., Sarwari, R., et al. (2010). Selective recruitment of breast cancer anti-estrogen resistance genes and relevance for breast cancer progression and tamoxifen therapy response. Endocrine-Related Cancer, 17, 215–230.

    Article  CAS  PubMed  Google Scholar 

  • Van Bragt, M. P., Hu, X., Xie, Y., & Li, Z. (2014). RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. eLife, 3, e03881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Brugge, J. S., & Janes, K. A. (2011). Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 108, E803–E812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, C. J., & Khaled, W. T. (2008). Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development, 135, 995–1003.

    Article  CAS  PubMed  Google Scholar 

  • Weith, A., Brodeur, G. M., Bruns, G. A., Matise, T. C., Mischke, D., Nizetic, D., et al. (1996). Report of the second international workshop on human chromosome 1 mapping 1995. Cytogenetics and Cell Genetics, 72, 114–144.

    Article  CAS  PubMed  Google Scholar 

  • Williams, C., Helguero, L., Edvardsson, K., Haldosen, L. A., & Gustafsson, J. A. (2009). Gene expression in murine mammary epithelial stem cell-like cells shows similarities to human breast cancer gene expression. Breast Cancer Research, 11, R26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, H., Yan, M., Patra, J., Natrajan, R., Yan, Y., Swagemakers, S., et al. (2011). Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. Breast Cancer Research, 13, R9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., Zhang, B., Liu, B., Xie, Y., & Cao, X. (2015). Combined Runx2 and Snail overexpression is associated with a poor prognosis in breast cancer. Tumour Biology, 36, 4565–4573.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y. Y., Chen, C., Kong, F. F., & Zhang, W. (2014). Clinicopathological significance and potential drug target of RUNX3 in breast cancer. Drug Design, Development and Therapy, 8, 2423–2430.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zong, J. C., Wang, X., Zhou, X., Wang, C., Chen, L., Yin, L. J., et al. (2016). Gut-derived serotonin induced by depression promotes breast cancer bone metastasis through the RUNX2/PTHrP/RANKL pathway in mice. Oncology Reports, 35, 739–748.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Laura McDonald and Nicola Ferrari for providing material used in Fig. 22.1; all in vivo work in the Blyth lab is ethically approved (University of Glasgow) and carried out under Home Office licence in accordance with the EU Directive 2010. We also thank Catherine Winchester and Jim Neil for helpful comments on the manuscript. The Blyth lab is core funded by Cancer Research UK (grant code A17196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Blyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rooney, N., Riggio, A.I., Mendoza-Villanueva, D., Shore, P., Cameron, E.R., Blyth, K. (2017). Runx Genes in Breast Cancer and the Mammary Lineage. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_22

Download citation

Publish with us

Policies and ethics