Skip to main content

Stabilization Policies and Business Cycle Dynamics

  • Chapter
  • First Online:
Book cover Business Cycle Dynamics and Stabilization Policies

Part of the book series: Advances in Japanese Business and Economics ((AJBE,volume 15))

  • 567 Accesses

Abstract

Stabilization policies interfere with the dynamic workings of the economic system to which they are applied. As a result, they necessarily generate some dynamic repercussions in the process. This chapter analyzes the dynamic interplay between stabilization policies, capital accumulation, and business cycles. Capital accumulation is an integral part of business cycles. It is not just a component of demand but an addition to the economy’s productive capacity, and, as such, has a lasting influence on employment. As a result, by affecting capital accumulation, stabilization policies can modify the entire shape of business cycles. Assuming a feedback-type policy function, it is shown that, due to the crowding-out effect of fiscal expenditures, too intensive implementation of fiscal stabilization policies leads to instability of the dynamics, but that suitably coordinated monetary policy may be capable of recovering stability.

Earlier versions of the paper on which this chapter is based were presented at the workshops held at Keio University and Tokyo University. The author wishes to thank the participants of these workshops for helpful comments and suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerlof, G.A., and J.E. Stiglitz. 1969. Capital, Wages and Structural Unemployment. Economic Journal 79: 269–281.

    Article  Google Scholar 

  • Ando, A.K., and F. Modigliani. 1963. The ‘Life-cycle’ Hypothesis of Saving: Aggligate Implications and Tests. American Economic Review 53: 55–84.

    Google Scholar 

  • Barro, R.J., and R.G. King. 1984. Time-separable Preferences and Intertemporal-Substitution Models of Business Cycles. Quarterly Journal of Economics 99: 817–839.

    Article  Google Scholar 

  • Barro, R.J., and C.J. Redlick. 2011. Macroeconomic Effects from Government Purchases and Taxes. Quarterly Journal of Economics 126: 51–102.

    Article  Google Scholar 

  • Bils, M.J. 1985. Real Wages Over the Business Cycle: Evidence from Panel Data. Journal of Political Economy 90: 666–689.

    Article  Google Scholar 

  • Blanchard, O.J., and S. Fischer. 1989. Lectures on Macroeconomics. Cambridge: MIT Press.

    Google Scholar 

  • Blanchard, O.J., and R. Perotti. 2002. An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output. Quarterly Journal of Economics 117: 1329–1368.

    Article  Google Scholar 

  • Cassel, G. 1923. The Theory of Social Economy, vol. 2. London: T. Fisher Unwin.

    Google Scholar 

  • Coddington, E.A., and N. Levinson. 1955. Theory of Ordinary Differential Equations. New York: McGraw-Hill.

    Google Scholar 

  • Drandakis, E.M. 1963. Factor Substitution in the Two-Sector Growth Model. Review of Economic Studies 30: 217–228.

    Article  Google Scholar 

  • Dunlop, J.T. 1938. The Movement of Real and Money Wage Rates. Economic Journal 48: 413–434.

    Article  Google Scholar 

  • Fillipov, A.F. 1988. Differential Equations with Discontinuous Righthand Sides. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Gantmacher, F.R. 1959. The Theory of Matrices, vol. 2. New York: Chelsea Publishing Company.

    Google Scholar 

  • Geary, P.T., and J. Kennan. 1982. The Employment-Real Wage Relationship: An International Study. Journal of Political Economy 90: 854–871.

    Article  Google Scholar 

  • Goodwin, R.M. 1951. The Nonlinear Accelerator and the Persistence of Business Cycles. Econometrica 19: 1–17.

    Article  Google Scholar 

  • Haberler, G. 1941. Prosperity and Depression, 3rd ed. Lake Success: United Nations.

    Google Scholar 

  • Hahn, F. 1969. On Money and Growth. Journal of Money, Credit and Banking 1: 172–187.

    Article  Google Scholar 

  • Hayek, F.A. 1935. Prices and Production, 2nd ed. London: Routledge and Kegan Paul.

    Google Scholar 

  • Hicks, J.R. 1937. Mr. Keynes and the ‘Classics’; A Suggested Interpretation. Econometrica 5: 147–159.

    Article  Google Scholar 

  • Hori, H. 1975. Investment Allocation and Growth in a Two-sector Economy with Nonshiftable Capital. In Resource Allocation and Division of Space, Lecture Notes in Economics and Mathematical Systems, vol. 147, ed. R. Sato and T. Fujii. Berlin: Springer.

    Google Scholar 

  • Hori, H. 1998. A Hicksian Two-sector Model of Unemployment, Cycles, and Growth. Journal of Economic Dynamics and Control 22: 369–399.

    Article  Google Scholar 

  • Inada, K. 1966. Investment in Fixed Capital and the Stability of Growth Equilibrium. Review of Economic Studies 33: 19–30.

    Article  Google Scholar 

  • Ito, T. 1980. Disequilibrium Growth Theory. Journal of Economic Theory 23: 380–409.

    Article  Google Scholar 

  • Keynes, J.M. 1936. The General Theory of Employment, Interest and Money. Reprinted in The Collected Writings of John Maynard Keynes, vol. 7. London: Macmillan.

    Google Scholar 

  • Kydland, F.E., and E.C. Prescott. 1982. Time to Build and Aggregate Fluctuations. Econometrica 50: 1345–1370.

    Article  Google Scholar 

  • Laitner, J. 1982. The Definition of Stability with Perfect Foresight. Journal of Economic Theory 28: 347–353.

    Article  Google Scholar 

  • Long, J.B.Jr., and C.I. Plosser. 1983. Real Business Cycles. Journal of Political Economy 91: 39–69.

    Google Scholar 

  • Mankiw, N.G. 1990. A Quick Refresher Course in Macroeconomics. Journal of Economic Literature 28: 1645–1660.

    Google Scholar 

  • Van Marrewijk, C. and J. Verbeek 1993. Sector-Specific Capital, Bang-Bang Investment and the Filippov Solution. Journal of Economics 57: 131–146.

    Article  Google Scholar 

  • Nagatani, K. 1969. A Monetary Growth Model with Variable Employment. Journal of Money, Credit and Banking 1: 188–206.

    Article  Google Scholar 

  • Phelps, E.S. 1988. An Extended Working Model of Slump and Recovery from Disturbances to Capital-Goods Prices in an Overlapping-Generations Closed Economy: ‘IS-LM’ Without Money. Mimeo: Columbia University.

    Google Scholar 

  • Romer, C.D., and D.H. Romer. 2010. The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks. American Economic Review 100: 763–801.

    Article  Google Scholar 

  • Rose, H. 1966. Unemployment in a Theory of Growth. International Economic Review 7: 260–282.

    Article  Google Scholar 

  • Rose, H. 1967. On the Non-Linear Theory of the Employment Cycle. Review of Economic Studies 34: 153–173.

    Article  Google Scholar 

  • Rose, H. 1969. Real and Monetary Factors in the Business Cycle. Journal of Money, Credit and Banking 1: 138–152.

    Article  Google Scholar 

  • Ryder, H.E. Jr. 1969. Optimal Accumulation in a Two-Sector Neoclassical Economy with Non-Shiftable Capital. Journal of Political Economy 77: 665–683.

    Article  Google Scholar 

  • Samuelson, P.A. 1958. An Exact Consumption-Loan Model of Interest with or Without the Social Contrivance of Money. Journal of Political Economy 66: 467–482.

    Article  Google Scholar 

  • Sargent, T., and N. Wallace. 1973. The Stability of Models of Money and Growth. Econometrica 41: 1043–1048.

    Article  Google Scholar 

  • Solow, R. 1956. A Contribution to the Theory of Economic Growth. Quarterly Journal of Economics 70: 65–94.

    Article  Google Scholar 

  • Spiethoff, A. 1923. “Krisen”, Handwoerterbuch der Staatswissenschaften, vol. 6, ed. Jena, G. Fischer, 8–91 (English translation published as “Business Cycles”. In International Economic Papers, vol. 3, 75–171, 1953).

    Google Scholar 

  • Stadler, G.W. 1994. Real Business Cycles. Journal of Economic Literature 32: 1750–1783.

    Google Scholar 

  • Stein, J.L. 1966. Money and Capacity Growth. Journal of Political Economy 74: 451–465.

    Article  Google Scholar 

  • Swan, T. 1956. Economic Growth and Capital Accumulation. Economic Record 32: 344–361.

    Article  Google Scholar 

  • Tarshis, L. 1938. Real Wages in the United States and Great Britain. Canadian Journal of Economics 4: 362–376.

    Google Scholar 

  • Taylor, J.B. 1993. Discretion and Policy Rules in Practice. Carnegie-Rochester Conference Series on Public Policy 39: 195–214.

    Article  Google Scholar 

  • Tobin, J. 1955. A Dynamic Aggregative Model. Journal of Political Economy 63: 103–115.

    Article  Google Scholar 

  • Tobin, J. 1965. Money and Economic Growth. Econometrica 33: 671–684.

    Article  Google Scholar 

  • Tobin, J. 1969. A General Equilibrium Approach to Monetary Theory. Journal of Money, Credit and Banking 1: 15–29.

    Article  Google Scholar 

  • Turnovsky, S.J. 1977. Macroeconomic Analysis and Stabilization Policies, chapter 8. Cambridge: Cambridge University Press.

    Google Scholar 

  • Uzawa, H. 1961. On a Two-Sector Model of Economic Growth I. Review of Economic Studies 29: 40–47.

    Article  Google Scholar 

  • Uzawa, H. 1963. On a Two-Sector Model of Economic Growth II. Review of Economic Studies 30: 105–118.

    Article  Google Scholar 

  • Uzawa, H. 1973. Towards a Keynesian Model of Monetary Growth. In Models of Economic Growth, ed. Mirrlees, J.A. and N.H. Stern, 53–70. London: Macmillan.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix

In appendices dealing with long-run equilibria, all the variables and functions are evaluated at the relevant long-run equilibrium. For notational convenience, however, the asterisks used in the main text to symbolize long-run equilibria are omitted here.

A.1 Some Mathematical Expressions Appearing in the Base Model

3.2.1 A.1.1 Comparative Statics

Let

$$\displaystyle{ D_{0} = z^{{\prime}}\left (\ell_{ 2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right ) + s(1-\tau )\ell_{ 1}(f^{{\prime}})^{2} <0. }$$
(3.94)

Then the partial derivatives of the main endogenous variables with respect to the state variable w are as follows.

$$\displaystyle{\begin{array}{l} \dfrac{dx} {dw} = -\dfrac{\ell z^{{\prime}}f^{{\prime}}} {wD_{0}}> 0, \\ \dfrac{di} {dw} = -\dfrac{s(1-\tau )(f^{{\prime}})^{2}\ell} {wD_{0}}> 0, \\ \dfrac{dp} {dw} = \dfrac{f^{{\prime}}\left (s\left (1-\tau \right )\ell_{1} + z^{{\prime}}\ell_{2}\right )} {D_{0}}> 0. \end{array} }$$

3.2.2 A.1.2 Speed of Wage Adjustment

The upper bound of the speed of wage adjustment for the occurence of cycles is given by

$$\displaystyle{ \bar{\sigma }= \frac{4s\left (1-\tau \right )xD_{0}} {kz^{{\prime}}\ell}. }$$

A.2 Some Mathematical Expressions Appearing in the Balanced-Budget Model

3.3.1 A.2.1 Comparative Statics

Let

$$\displaystyle{ D_{1} = D_{0} + sf^{{\prime}}f\ell_{ 1}kg^{{\prime}} <0, }$$
(3.95)

where D 0 is defined by (3.94). Then the comparative static partial derivatives in the balanced-budget model are as follows.

$$\displaystyle\begin{array}{rcl} \frac{\partial x} {\partial k}& =& -\frac{sf^{{\prime}}f\ell_{1}g^{{\prime}}} {D_{1}} <0, {}\\ \frac{\partial i} {\partial k}& =& \frac{sxf\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}} {D_{1}} <0, {}\\ \frac{\partial x} {\partial w}& =& -\frac{z^{{\prime}}f^{{\prime}}\ell} {wD_{1}} <0, {}\\ \frac{\partial i} {\partial w}& =& -\frac{f^{{\prime}}\ell\left (s(1-\tau \right )f^{{\prime}} + skfg^{{\prime}})} {wD_{1}}> 0, {}\\ \frac{\partial e} {\partial k}& =& \frac{xD_{0}} {D_{1}}> 0. {}\\ \end{array}$$

3.3.2 A.2.2 Linear Dynamic System

With D 0 and D 1 as defined by (3.94) and (3.95), the coefficients ζ j i of the linear dynamic system (3.31) are as follows.

$$\displaystyle{\begin{array}{l} \zeta _{1}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial k} = \dfrac{skz^{{\prime}}xf\left (\ell_{2}\left (f^{{\prime}}\right )^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}} {D_{1}}> 0, \\ \zeta _{2}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial w} = -\dfrac{kz^{{\prime}}f^{{\prime}}\ell\left (s\left (1-\tau \right )f^{{\prime}} + skfg^{{\prime}}\right )} {wD_{1}} <0, \\ \zeta _{1}^{2} =\sigma w \times \dfrac{\partial e} {\partial k} = \dfrac{\sigma wxD_{0}} {D_{1}}> 0, \\ \zeta _{2}^{2} =\sigma w \times \dfrac{\partial e} {\partial w} = -\dfrac{\sigma kz^{{\prime}}f^{{\prime}}\ell} {D_{1}} <0. \end{array} }$$

3.3.3 A.2.3 Characteristic Polynomial

With D 1 as defined by (3.95), the coefficients α j of the characteristic polynomial associated with the linear dynamic system (3.31) are as follows.

$$\displaystyle{\begin{array}{l} \alpha _{1} = \dfrac{kz^{{\prime}}\left (-\sigma f^{{\prime}}\ell + sxf\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}\right )} {D_{1}} \lesseqgtr 0, \\ \alpha _{2} = \dfrac{\sigma s\left (1-\tau \right )(f^{{\prime}})^{2}kz^{{\prime}}x\ell} {D_{1}}> 0. \end{array} }$$

3.3.4 A.2.4 Limit Policy Intensity

The limit policy intensity for the balanced-budget fiscal policy is given by

$$\displaystyle{ \gamma _{1} = \dfrac{\sigma f^{{\prime}}\ell} {sxf\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )}. }$$
(3.96)

A.3 Some Mathematical Expressions Appearing in the Partial Debt Finance Model

3.4.1 A.3.1 Comparative Statics

Let

$$\displaystyle{ D_{2} = D_{0} + kff^{{\prime}}\ell_{ 1}g^{{\prime}}, }$$
(3.97)

where D 0 is defined by (3.94). Then the comparative static derivatives appearing in the partial debt finance model are as follows.

$$\displaystyle{ \begin{array}{l} \dfrac{\partial x} {\partial k} = -\dfrac{ff^{{\prime}}\ell_{1}g^{{\prime}}} {D_{2}} <0, \\ \dfrac{\partial x} {\partial w} = -\dfrac{z^{{\prime}}f^{{\prime}}\ell} {wD_{2}} <0, \\ \dfrac{\partial x} {\partial b} = -\dfrac{z^{{\prime}}f^{{\prime}}\left (\ell-\ell_{2}f\right )} {kD_{2}} <0 \\ \dfrac{\partial i} {\partial k} = \dfrac{fx\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}} {D_{2}} <0, \\ \dfrac{\partial i} {\partial w} = -\dfrac{f^{{\prime}}\ell\left (s(1-\tau )f^{{\prime}} + kfg^{{\prime}}\right )} {wD_{2}}> 0, \\ \dfrac{\partial i} {\partial b} = -\dfrac{f^{{\prime}}\left (\ell-\ell_{2}f\right )\left (s\left (1-\tau \right )f^{{\prime}} + kfg^{{\prime}}\right )} {kD_{2}}> 0, \\ \dfrac{\partial e} {\partial k} = \dfrac{xD_{0}} {D_{2}}> 0. \end{array} }$$

3.4.2 A.3.2 Linear Dynamic System

Let D 0 and D 2 be as defined by (3.94) and (3.97). Then the coefficients ξ j i of the linear dynamic system (3.41) are as follows.

$$\displaystyle{ \begin{array}{l} \xi _{1}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial k} = \dfrac{kz^{{\prime}}fx\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}} {D_{2}}> 0, \\ \xi _{2}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial w} = -\dfrac{kz^{{\prime}}f^{{\prime}}\ell\left (s(1-\tau )f^{{\prime}} + kfg^{{\prime}}\right )} {wD_{2}} <0, \\ \xi _{3}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial b} = -\dfrac{z^{{\prime}}f^{{\prime}}\left (\ell-\ell_{2}f\right )\left (s\left (1-\tau \right )f^{{\prime}} + kfg^{{\prime}}\right )} {D_{2}} <0, \\ \xi _{1}^{2} =\sigma w \times \dfrac{\partial e} {\partial k} = \dfrac{\sigma wxD_{0}} {D_{2}}> 0, \\ \xi _{2}^{2} =\sigma w \times \dfrac{\partial e} {\partial w} = -\dfrac{\sigma kz^{{\prime}}f^{{\prime}}\ell} {D_{2}} <0, \\ \xi _{3}^{2} =\sigma w \times \dfrac{\partial e} {\partial b} = -\dfrac{\sigma wz^{{\prime}}f^{{\prime}}\left (\ell-\ell_{2}y\right )} {D_{2}} <0, \\ \xi _{1}^{3} = -fkg^{{\prime}}\times \dfrac{\partial e} {\partial k} = -\dfrac{fkxD_{0}g^{{\prime}}} {D_{2}} <0, \\ \xi _{2}^{3} = -fkg^{{\prime}}\times \dfrac{\partial e} {\partial w} = \dfrac{fk^{2}z^{{\prime}}f^{{\prime}}\ell g^{{\prime}}} {wD_{2}}> 0, \\ \xi _{3}^{3} = -fkg^{{\prime}}\times \dfrac{\partial e} {\partial b} - n = \dfrac{fkz^{{\prime}}f^{{\prime}}\left (\ell-\ell_{2}f\right )g^{{\prime}}} {D_{2}} - n \lesseqgtr 0. \end{array} }$$

3.4.3 A.3.3 Characteristic Polynomial

Let D 0 be as defined by (3.94). Then the α ij and β appearing in (3.44) are as follows.

$$\displaystyle{\begin{array}{l} \alpha _{11} = -fk\left [z^{{\prime}}\left (x\left (\ell_{2}\left (f^{{\prime}}\right )^{2} -\ell f^{{\prime\prime}}\right ) + f^{{\prime}}\left (\ell-\ell_{2}f\right )\right ) - n\ell_{1}f^{{\prime}}\right ] \lesseqgtr 0, \\ \alpha _{12} = -\sigma f^{{\prime}}kz^{{\prime}}\ell- nD_{0}> 0, \\ \alpha _{21} = -fkxz^{{\prime}}\left [s(1-\tau )(f^{{\prime}})^{2}\left (\ell-\ell_{2}f\right ) + n\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )\right ]> 0, \\ \alpha _{22} =\sigma f^{{\prime}}kz^{{\prime}}\ell\left (n + s(1 -\tau xf^{{\prime}}\right ) <0, \\ \alpha _{32} = -\sigma xnkz^{{\prime}}\ell s\left (1-\tau \right )\left (f^{{\prime}}\right )^{2}> 0, \\ \beta = kff^{{\prime}}\ell_{1} <0. \end{array} }$$

A.4 An Elementary Proof of the Routh-Hurwitz Stability Conditions for a Three-Variable System

Routh-Hurwitz stability conditions: Let \(\varphi \left (\lambda \right ) = -\lambda ^{3} +\alpha _{1}\lambda ^{2} -\alpha _{2}\lambda +\alpha _{3}\)  be the characteristic polynomial. Then, in order for the real parts of all the charactersitic roots to be negative, it is necessary and sufficient that

$$\displaystyle{ \alpha _{1} <0,\alpha _{3} <0,\text{ and }\alpha _{1}\alpha _{2} -\alpha _{3} <0. }$$
(3.98)

Proof

Let λ i ,  i = 1, 2, 3, be the characteristic roots. They are related to the α j by the identities (1.30) reproduced below:

$$\displaystyle\begin{array}{rcl} \alpha _{1}& =& \lambda _{1} +\lambda _{2} +\lambda _{3}, {}\\ \alpha _{2}& =& \lambda _{2}\lambda _{3} +\lambda _{1}\lambda _{3} +\lambda _{2}\lambda _{3}, {}\\ \alpha _{3}& =& \lambda _{1}\lambda _{2}\lambda _{3}. {}\\ \end{array}$$

(1.30) also yields

$$\displaystyle{ \alpha _{1}\alpha _{2} -\alpha _{3} = \left (\lambda _{1} +\lambda _{2}\right )\left (\lambda _{1}\lambda _{2} +\lambda _{3}\left (\lambda _{1} +\lambda _{2} +\lambda _{3}\right )\right ). }$$
(3.99)
  1. I]

    Necessity. If all the λ i are real and negative, then (3.98) holds due to (1.30) and (3.99). Suppose the characteristic roots contain complex numbers, assume without loss of generality that λ 1 = a + bi, λ 2 = abi, λ 3 = c, and assume that a < 0, c < 0, and b ≠ 0. Then α 1 = 2a + c < 0,  α 3 = c(a 2 + b 2) < 0, and \(\alpha _{1}\alpha _{2} -\alpha _{3} = 2a\left (a^{2} + b^{2} + c\left (2a + c\right )\right ) <0.\)

  2. II]

    Sufficiency. Suppose all the inequalities in (3.98) hold. A contradiction will be derived from the assumption that some of the characteristic roots have non-negative real parts.

    First suppose that all the λ i are real. If \(\lambda _{i} \geq 0\ \forall i,\) then α 1 ≥ 0. If two of the characteristic roots are negative but one is nonnegative, then α 3 ≥ 0. If one of the characteristic roots, λ 3 say, is negative but the other two are nonnegative, then λ 1 +λ 2 ≥ 0 and λ 1 λ 2 ≥ 0. Moreover, since λ 1 +λ 2 +λ 3 = α 1 < 0 by the first inequality in (3.98), we also have \(\lambda _{3}\left (\lambda _{1} +\lambda _{2} +\lambda _{3}\right )> 0.\) Therefore it follows from (3.99) that α 1 α 2α 3 ≥ 0, which contradicts the supposition that all the inequalities in (3.98) hold. Next suppose that the characteristic roots contain complex numbers and assume, without loss of generality, that λ 1 = a + bi, λ 2 = abi, and λ 3 = c, where a, b, and c are real. If c ≥ 0, then α 3 = λ 1 λ 2 λ 3 ≥ 0. If c < 0 and a ≥ 0, then, since λ 1 +λ 2 +λ 3 = α 1 < 0  by assumption, it follows from (3.99) that \(\alpha _{1}\alpha _{2} -\alpha _{3} = 2a\left (c\alpha _{1} + a^{2} + b^{2}\right ) \geq 0\), which is a contradiction.

A.5 Proof that the Inequality γ 2 < s γ 1 Holds in the Partial Debt Finance Model

Write \(\zeta _{j}^{i}\left (\gamma \right )\) and \(\xi _{j}^{i}\left (\gamma \right )\) to make explicit the dependence of ζ j i and ξ j i on \(\gamma = g^{{\prime}}\left (0\right ),\) where \(\zeta _{j}^{i}\left (\gamma \right )\) and \(\xi _{j}^{i}\left (\gamma \right )\) are the coefficients of the linearized systems in the balanced-budget and partially debt-financed models respectively and are specified in Appendices A.2 and A.3. Then, since D 2(s γ) = D 1(γ) by (3.95) and (3.97), and since the long-run equilibria of the balanced-budget and partial debt finance models coincide, we have

$$\displaystyle{ \xi _{j}^{i}\left (s\gamma \right ) =\zeta _{ j}^{i}\left (\gamma \right ),i,j = 1,2. }$$
(3.100)

Let \(\bar{\gamma }= s\gamma _{1}\) for brevity, where γ 1 is the limit policy intensity in the balanced budget model and is defined by \(\zeta _{1}^{1}\left (\gamma _{1}\right ) +\zeta _{ 2}^{2}\left (\gamma _{1}\right ) = 0\). Then we have \(\xi _{1}^{1}(\bar{\gamma }) +\xi _{ 2}^{2}(\bar{\gamma }) =\zeta _{ 1}^{1}\left (\gamma _{1}\right ) +\zeta _{ 2}^{2}\left (\gamma _{1}\right ) = 0\) by (3.100) and therefore, by the identities relating the α i and the ξ j i,

$$\displaystyle{ \alpha _{1}(\bar{\gamma }) =\xi _{ 3}^{3}(\bar{\gamma }). }$$
(3.101)

Furthermore, by partly using (3.96) for γ 1 and using the formulae for the α ij provided in Appendix A.3, we obtain

$$\displaystyle{ \alpha _{2}\left (\bar{\gamma }\right ) = -\left (D_{2}\left (\bar{\gamma }\right )\right )^{-1}kz^{{\prime}}xs\left (1-\tau \right )\left (f^{{\prime}}\right )^{2}\left \{f\left (\ell-\ell_{ 2}f\right )\bar{\gamma }-\sigma \ell\right \}, }$$
(3.102)
$$\displaystyle{ \alpha _{3}\left (\bar{\gamma }\right ) = -\left (D_{2}\left (\bar{\gamma }\right )\right )^{-1}\sigma xnkz^{{\prime}}\ell s\left (1-\tau \right )(f^{{\prime}})^{2}. }$$
(3.103)

Therefore, by (3.101), (3.102), and (3.103),

$$\displaystyle\begin{array}{rcl} A\left (\bar{\gamma }\right )& \equiv & \alpha _{1}\left (\bar{\gamma }\right )\alpha _{2}\left (\bar{\gamma }\right ) -\alpha _{3}\left (\bar{\gamma }\right ) \\ & =& -\left (D_{2}\left (\bar{\gamma }\right )\right )^{-1}kz^{{\prime}}xs\left (1-\tau \right )\left (f^{{\prime}}\right )^{2} \\ & & \times \left \{\xi _{3}^{3}\left (\bar{\gamma }\right )\left (\ell-\ell_{ 2}f\right ) -\sigma \ell\left (\xi _{3}^{3}\left (\bar{\gamma }\right ) + n\right )\right \}.{}\end{array}$$
(3.104)

If \(\xi _{3}^{3}\left (\bar{\gamma }\right )> 0,\) then \(\alpha _{1}(\bar{\gamma })> 0\) by (3.101). If \(\xi _{3}^{3}\left (\bar{\gamma }\right ) \leq 0,\) then \(A\left (\bar{\gamma }\right )> 0\) by (3.5) and (3.10) because

$$\displaystyle{ \xi _{3}^{3}\left (\bar{\gamma }\right ) + n = -fk\bar{\gamma } \times \frac{\partial e} {\partial b}> 0 }$$

by (3.39). Thus the long-run equilibrium is unstable in either case if γ = s γ 1. Combining this with the discussion of γ 2 given in the main text, we obtain γ 2 < s γ 1. 

A.6 Some Mathematical Expressions Appearing in the Full Debt Finance Model

3.7.1 A.6.1 Comparative Statics

Let D 0, D 2, and \(\Pi\) be defined by (3.94), (3.97), and (3.50). Then the comparative static derivatives in the full debt finance model are as follows.

$$\displaystyle\begin{array}{rcl} \frac{\partial x} {\partial k}& =& -\frac{xff^{{\prime}}\ell_{1}g^{{\prime}}} {D_{2}} <0, {}\\ \frac{\partial x} {\partial w}& =& -\frac{z^{{\prime}}f^{{\prime}}\ell} {wD_{2}} <0, {}\\ \frac{\partial x} {\partial b}& =& -\frac{f^{{\prime}}\ell_{1}z^{{\prime}}\Pi } {kD_{2}} \lesseqgtr 0, {}\\ \frac{\partial i} {\partial k}& =& \frac{xf\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}} {D_{2}} <0, {}\\ \frac{\partial i} {\partial w}& =& -\frac{f^{{\prime}}\ell\left (s(1-\tau )f^{{\prime}} + kfg^{{\prime}}\right )} {wD_{2}}> 0, {}\\ \frac{\partial i} {\partial b}& =& -\frac{f^{{\prime}}\left (\ell-\ell_{2}f\right )\left (s\left (1-\tau \right )f^{{\prime}} + kfg^{{\prime}}\right ) + ci\left (\ell_{2}\left (f^{{\prime}}\right )^{2} -\ell f^{{\prime\prime}}\right )} {kD_{2}}> 0, {}\\ \frac{\partial e} {\partial k}& =& \frac{xD_{0}} {D_{2}}> 0. {}\\ \end{array}$$

3.7.2 A.6.2 Linear Dynamic System

Let ξ j i be as in Appendix A.3. Then, with D 2 and \(\Pi\) as defined by (3.97) and (3.50), the coefficients η j i of the linear dynamic system (3.53) are as follows.

$$\displaystyle{\begin{array}{l} \eta _{j}^{i} =\xi _{ j}^{i}\text{ for }i = 1,2,3\text{ and }j = 1,2, \\ \eta _{3}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial b} \\ \ \ \; = -\dfrac{z^{{\prime}}\left [f^{{\prime}}\left (\ell-\ell_{2}f\right )\left (s\left (1-\tau \right )f^{{\prime}} + fkg^{{\prime}}\right ) + ci\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )\right ]} {D_{2}} <0, \\ \eta _{3}^{2} =\sigma w \times \dfrac{\partial e} {\partial b} = -\dfrac{\sigma wf^{{\prime}}\ell_{1}z^{{\prime}}\Pi } {D_{2}} \lesseqgtr 0, \\ \eta _{3}^{3} = -fkg^{{\prime}}\times \dfrac{\partial e} {\partial b} + \left (i - n\right ) = \dfrac{f^{{\prime}}fk\ell_{1}z^{{\prime}}\Pi g^{{\prime}}} {D_{2}} + \left (i - n\right ) \lesseqgtr 0. \end{array} }$$

3.7.3 A.6.3 Characteristic Polynomial

Let \(\Pi\) and D 0 be defined by (3.50) and (3.94). Then the α ij that appear in (3.54) are as follows.

$$\displaystyle{\begin{array}{l} \alpha _{11} = fk\left (xz^{{\prime}}\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right ) + f^{{\prime}}\ell_{1}z^{{\prime}}\Pi -\left (n - i\right )f^{{\prime}}\ell_{1}\right ) \lesseqgtr 0, \\ \alpha _{12} = -\sigma kf^{{\prime}}z^{{\prime}}\ell-\left (n - i\right )D_{0}> 0, \\ \alpha _{21} = -fkxz^{{\prime}}\left (s\left (1-\tau \right )(f^{{\prime}})^{2}\left (\ell-\ell_{2}f\right ) + \left (n - si\right )\left (\ell_{2}\left (f^{{\prime}}\right )^{2} -\ell f^{{\prime\prime}}\right )\right )> 0, \\ \alpha _{22} =\sigma kz^{{\prime}}\ell\left (\left (n - i\right ) + s\left (1-\tau \right )xf^{{\prime}}\right ) <0, \\ \alpha _{32} = -\sigma x(n - i)kz^{{\prime}}\ell s(1-\tau )(f^{{\prime}})^{2}> 0. \end{array} }$$

A.7 Proof that γ 3 < s γ 1 in the Full Debt Finance Model if the Crowding-Out Effect of Debt Accumulation Dominates so that \(\dfrac{\partial e} {\partial b} <0\)

Let \(\bar{\gamma }= s\gamma _{1}\) as in Appendix A.5. Then

$$\displaystyle{ \eta _{1}^{1}\left (\bar{\gamma }\right ) +\eta _{ 2}^{2}\left (\bar{\gamma }\right ) =\xi _{ 1}^{1}\left (\bar{\gamma }\right ) +\xi _{ 2}^{2}\left (\bar{\gamma }\right ) =\zeta _{ 1}^{1}\left (\gamma _{ 1}\right ) +\zeta _{ 2}^{2}\left (\gamma _{ 1}\right ) = 0 }$$

by the relations between η j i, ξ j i, and ζ j i provided in Appendix A.3, (3.100), and (3.96). Therefore

$$\displaystyle{ \alpha _{1}\left (\bar{\gamma }\right ) =\eta _{ 3}^{3}\left (\bar{\gamma }\right ). }$$
(3.105)

Partly using (3.96) for γ 1 and using the formulae provided in Appendix A.6, we also obtain

$$\displaystyle{ \alpha _{2}\left (\bar{\gamma }\right ) = -\left (D_{2}\left (\bar{\gamma }\right )\right )^{-1}kz^{{\prime}}f^{{\prime}}\left [xs(1-\tau )f^{{\prime}}\left \{\bar{\gamma }f\left (\ell-\ell_{ 2}f\right )-\sigma \ell\right \} +\sigma \ell ci\right ] }$$
(3.106)

and

$$\displaystyle{ \alpha _{3}\left (\bar{\gamma }\right ) = -\left (D_{2}\left (\bar{\gamma }\right )\right )^{-1}\sigma x\left (n - i\right )kz^{{\prime}}\ell s(1-\tau )(f^{{\prime}})^{2}. }$$
(3.107)

Thus by (3.105), (3.106) and (3.107),

$$\displaystyle\begin{array}{rcl} A\left (\bar{\gamma }\right )& \equiv & \alpha _{1}\left (\bar{\gamma }\right )\alpha _{2}\left (\bar{\gamma }\right ) -\alpha _{3}\left (\bar{\gamma }\right ) {}\\ & =& -\left (D_{2}\left (\bar{\gamma }\right )\right )^{-1}kz^{{\prime}}f^{{\prime}}\left [\eta _{ 3}^{3}\left (\bar{\gamma }\right )\left \{s(1-\tau )f^{{\prime}}\left (\ell-\ell_{ 2}f\right )\bar{\gamma }xf +\sigma \ell ci\right \}\right. {}\\ & & \left.-\sigma \ell xs\left (1-\tau \right )f^{{\prime}}\left \{\eta _{ 3}^{3}\left (\bar{\gamma }\right ) + n - i\right \}\right ], {}\\ \end{array}$$

where

$$\displaystyle{ \eta _{3}^{3}\left (\bar{\gamma }\right ) + n - i = -\bar{\gamma }fk \times \frac{\partial e} {\partial b}> 0 }$$
(3.108)

by the assumption that ∂ e∂ b < 0. If \(\eta _{3}^{3}\left (\bar{\gamma }\right )> 0\) then \(\alpha _{1}\left (\bar{\gamma }\right )> 0\) by (3.105). If \(\eta _{3}^{3}\left (\bar{\gamma }\right ) \leq 0,\) then \(A\left (\bar{\gamma }\right )> 0\) by (3.108). Therefore the long-run equilibrium is unstable at \(\gamma =\bar{\gamma }\) in either case and thus we have \(\gamma _{3} <\bar{\gamma }\equiv s\gamma _{1}.\)

A.8 Some Mathematical Expressions Appearing in the Crowding-In Model

In order to show that a long-run equilibrium with b > 0 is unstable, we first report the general expression for α 3 in A.8.1. The expressions in A.8.2, A.8.3, and A.8.4 below, presenting comparative statics, linear dynamaic system, and characteristic polynomial respectively, assume that b = 0. 

3.9.1 A.8.1 General Expression for α 3

Let

$$\displaystyle{\begin{array}{l} D_{3} = (cb + kz_{1})\left (\ell_{2}k(f^{{\prime}})^{2} -\ell\left (k + b\right )f^{{\prime\prime}}\right ) \\ + k(k + b)f^{{\prime}}\ell_{1}\left (s(1-\tau )f^{{\prime}}- z_{2}r^{{\prime}} + kfg^{{\prime}}\right ) <0. \end{array} }$$

Then

$$\displaystyle{\begin{array}{l} \phantom{0.}\alpha _{3} = \left (D_{3}\right )^{-1}\left (a_{31}\left (i - n\right ) + a_{32}b\right ), \\ \ \ a_{31} =\sigma k^{2}\left (k + b\right )z_{1}\ell sx\left (1-\tau \right )\left (f^{{\prime}}\right )^{2} <0, \\ \ \ a_{32} = -\sigma k\left (k + b\right )z_{2}f^{{\prime}}\ell r^{{\prime}}x\left (a + ci\right ) <0. \end{array} }$$

3.9.2 A.8.2 Comparative Statics

Let \(\Pi\) be defined by (3.75), and let

$$\displaystyle{ D_{40} = z_{1}\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right ) + f^{{\prime}}\ell_{ 1}\left (s(1-\tau \right )f^{{\prime}}- z_{ 2}r^{{\prime}}) <0, }$$
(3.109)
$$\displaystyle{ D_{4} = D_{40} +\ell _{1}kff^{{\prime}}g^{{\prime}} <0. }$$
(3.110)

Then we have

$$\displaystyle\begin{array}{rcl} \frac{\partial x} {\partial k}& =& -\frac{\ell_{1}xff^{{\prime}}g^{{\prime}}} {D_{4}} <0, {}\\ \frac{\partial i} {\partial k}& =& \frac{xf\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )g^{{\prime}}} {D_{4}} <0, {}\\ \frac{\partial x} {\partial w}& =& -\frac{z_{1}f^{{\prime}}\ell} {wD_{4}} <0, {}\\ \frac{\partial i} {\partial w}& =& -\frac{f^{{\prime}}\ell\left (s(1-\tau \right )f^{{\prime}}- z_{2}r^{{\prime}} + kfg^{{\prime}})} {wD_{4}}> 0, {}\\ \frac{\partial x} {\partial b}& =& -\frac{f^{{\prime}}\left (z_{1}\left (\ell-\ell_{2}f\right ) -\ell_{1}(a + ci)\right )} {D_{4}} \lesseqgtr 0\text{ as }\Pi \lesseqgtr 0, {}\\ \frac{\partial i} {\partial b}& =& - \frac{1} {D_{4}}\! \times \!\left [\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right )(a + ci) + f^{{\prime}}\left (\ell-\ell_{ 2}f\right )\left (s(1\,-\,\tau )f^{{\prime}}\!-\! z_{ 2}r^{{\prime}}\,+\,kfg^{{\prime}}\right )\right ]\!>\! 0, {}\\ \frac{\partial e} {\partial k}& =& \frac{xD_{40}} {D_{4}}> 0. {}\\ \end{array}$$

3.9.3 A.8.3 Linear Dynamic System

Let \(D_{40},D_{4},\ \Pi,\) and \(\Delta\) be as defined by (3.109), (3.110), and (3.75), and (3.70). Then the coefficients θ j i of the linear dynamic system (3.84) are as follows.

$$\displaystyle{\begin{array}{l} \theta _{1}^{1} = k\left (z_{1} \times \dfrac{\partial i} {\partial k} + z_{2}r^{{\prime}}\times \dfrac{\partial x} {\partial k}\right ) = -\dfrac{\ell_{1}ff^{{\prime}}\Delta g^{{\prime}}} {D_{4}}, \\ \theta _{2}^{1} = k\left (z_{1} \times \dfrac{\partial i} {\partial w} + z_{2}r^{{\prime}}\times \dfrac{\partial x} {\partial w}\right ) = -\dfrac{z_{1}f^{{\prime}}\ell\left (s\left (1-\tau \right )f^{{\prime}} + kfg^{{\prime}}\right )} {wD_{4}}, \\ \theta _{3}^{1} = k\left (z_{1} \times \dfrac{\partial i} {\partial b} + z_{2}r^{{\prime}}\times \dfrac{\partial x} {\partial b}\right ) \\ \quad \ = - \dfrac{k} {D_{4}} \times \big [\!\left (a + ci\right )\left \{z_{1}\left (\ell_{2}(f^{{\prime}})^{2} -\ell f^{{\prime\prime}}\right ) - z_{2}r^{{\prime}}\ell_{2}\right \} \\ + z_{1}f^{{\prime}}\left (\ell-\ell_{2}f\right )\left (s(1-\tau )f^{{\prime}} + kfg^{{\prime}}\right )\big], \\ \theta _{1}^{2} =\sigma w \times \dfrac{\partial e} {\partial k} = \dfrac{\sigma wxD_{40}} {D_{4}}, \\ \theta _{2}^{2} =\sigma w \times \dfrac{\partial e} {\partial w} = -\dfrac{\sigma kz_{1}f^{{\prime}}\ell} {D_{4}}, \\ \theta _{3}^{2} =\sigma w \times \dfrac{\partial e} {\partial b} = -\dfrac{\sigma wkf^{{\prime}}z_{1}\ell\Pi } {D_{4}}, \\ \theta _{1}^{3} = -kfg^{{\prime}}\times \dfrac{\partial e} {\partial k} + b \times \dfrac{\partial i} {\partial k} = -\dfrac{fD_{30}g^{{\prime}}} {D_{4}}, \\ \theta _{2}^{3} = -kfg^{{\prime}}\times \dfrac{\partial e} {\partial w} + b \times \dfrac{\partial i} {\partial w} = \dfrac{k^{2}ff^{{\prime}}z_{1}\ell g^{{\prime}}} {wD_{4}}, \\ \theta _{3}^{3} = -kfg^{{\prime}}\times \dfrac{\partial e} {\partial b} + \left (i - n\right ) + b \times \dfrac{\partial i} {\partial b} = \dfrac{k^{2}ff^{{\prime}}z_{1}\ell\Pi g^{{\prime}}} {D_{4}} + (i - n). \end{array} }$$

3.9.4 A.8.4 Characteristic Polynomial

With \(D_{40},\Pi,\) and \(\Delta\) as defined by (3.109), (3.75), and (3.70), the α ij that appear in (3.86) are as follows.

$$\displaystyle{\begin{array}{l} \alpha _{11} = -kff^{{\prime}}\ell_{1}\left \{x\Delta - z_{1}\Pi -\left (i - n\right )\right \} \lesseqgtr 0, \\ \alpha _{12} = -\sigma kz_{1}f^{{\prime}}\ell + \left (i - n\right )D_{40}> 0, \\ \alpha _{21} = kfxf^{{\prime}}\left [\ell_{1}\left (a + ci -\left (i - n\right )\right )\Delta - s\left (1-\tau \right )f^{{\prime}}z_{1}\left (\ell-\ell_{2}f\right )\right ] \\ \qquad \!\! \equiv kfxf^{{\prime}}\ell_{1} \\ \quad \qquad \times \left [\left \{\left (a + ci -\left (i - n\right )\right )\Delta - s(1-\tau )z_{1}f^{{\prime}}\Pi \right \} - s\left (1-\tau \right )f^{{\prime}}\left (ci + a\right )\right ] \lesseqgtr 0, \\ \alpha _{22} = -\sigma kz_{1}f^{{\prime}}\ell\left \{\left (i - n\right ) - sx\left (1-\tau \right )f^{{\prime}}\right \} <0, \\ \alpha _{32} = \left (i - n\right )\sigma skxz_{1}\ell\left (1-\tau \right )\left (f^{{\prime}}\right )^{2}> 0. \end{array} }$$

A.9 Some Mathematical Expressions Appearing in the Coordinated Monetary Policy Model

3.10.1 A.9.1 Linear Dynamic System

Let D 0 and D 2 be defined by (3.94) and (3.97), let η j i be the coefficients of the linear dynamic system in the full debt finance model, and let

$$\displaystyle{ D_{5} = D_{0} + kff^{{\prime}}\ell_{ 1}g^{{\prime}}(0) + \frac{z^{{\prime}}k(f^{{\prime}})^{2}} {w} m^{{\prime}}(0) <0. }$$

Then the coefficients ψ j i of the linear dyanamic system (3.90) can be written in the following way.

$$\displaystyle{\begin{array}{l} \psi _{1}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial k} = \dfrac{1} {D_{5}}\left [D_{2}\eta _{1}^{1} -\dfrac{kz^{{\prime}}s(1-\tau )\left (f^{{\prime}}\right )^{2}} {w} \times m^{{\prime}}\right ] \lesseqgtr 0, \\ \psi _{2}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial w} = \dfrac{D_{2}\eta _{2}^{1}} {D_{5}} <0, \\ \psi _{3}^{1} = kz^{{\prime}}\times \dfrac{\partial i} {\partial b} = \dfrac{1} {D_{5}}\left [D_{2}\eta _{3}^{1} -\dfrac{z^{{\prime}}k\left (f^{{\prime}}\right )^{2}ci} {w} \times m^{{\prime}}\right ] <0, \\ \psi _{1}^{2} =\sigma w \times \dfrac{\partial e} {\partial k} = \dfrac{D_{2}\eta _{1}^{2}} {D_{5}}> 0, \\ \psi _{2}^{2} =\sigma wk \times \dfrac{\partial x} {\partial w} = \dfrac{D_{2}\eta _{2}^{2}} {D_{5}} <0, \\ \psi _{3}^{2} =\sigma wk \times \dfrac{\partial x} {\partial b} = \dfrac{D_{2}\eta _{3}^{2}} {D_{5}} \lesseqgtr 0, \\ \psi _{1}^{3} = -kfg^{{\prime}}\times \dfrac{\partial e} {\partial k} = \dfrac{D_{2}\eta _{1}^{3}} {D_{5}} <0, \\ \psi _{2}^{3} = -fk^{2}g^{{\prime}}\times \dfrac{\partial x} {\partial w} = \dfrac{D_{2}\eta _{2}^{3}} {D_{5}}> 0, \\ \psi _{3}^{3} = -fk^{2}g^{{\prime}}\times \dfrac{\partial x} {\partial b} + (i - n) \\ \quad \;\, = \dfrac{1} {D_{5}}\left [D_{2}\eta _{3}^{3} + \dfrac{\left (i - n\right )z^{{\prime}}k(f^{{\prime}})^{2}} {w} \times m^{{\prime}}\right ] \lesseqgtr 0.\end{array} }$$

3.10.2 A.9.2 Characteristic Polynomial

The α ij m whose signs are reported in (3.93) in the text are as follows.

$$\displaystyle\begin{array}{rcl} \alpha _{11}^{m}& =& w^{-1}kz^{{\prime}}(f^{{\prime}})^{2}\left (i - n - s\left (1-\tau \right )\right )> 0, {}\\ \alpha _{21}^{m}& =& -w^{-1}kz^{{\prime}}x\left (i - n\right )s(1-\tau )(f^{{\prime}})^{3} <0. {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hori, H. (2017). Stabilization Policies and Business Cycle Dynamics. In: Business Cycle Dynamics and Stabilization Policies. Advances in Japanese Business and Economics, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-10-3081-9_3

Download citation

Publish with us

Policies and ethics