Skip to main content

TBAF Fluorination for Preparing Alkyl Fluorides

Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 280 Accesses

Introduction

Fluorinated alkyl substituents appear widely in medicinal and pharmaceutical chemistry [1,2,3,4,5,6,7], and [18F]-fluorinated ethyl or propyl tags are increasingly common tools radiochemists use to prepare [18F]-labeled radiopharmaceuticals for positron emission tomography (PET) [8,9,10,11]. Numerous fluorinating reagents that are available to prepare alkyl fluorides through nucleophilic, electrophilic, and radical approaches are covered elsewhere in this volume. Here we will review fluorinations with the readily available and prototypical nucleophilic fluorinating reagent tetrabutylammonium fluoride (TBAF) and its derivatives.

In the gas phase, fluoride is an incredibly potent nucleophile and strong base because of its concentration of charge (as the smallest monoanion) and because of its propensity to form very strong bonds with hydrogen and carbon. In solution, the situation is quite different: strong ion pairing with cations, dipolar interactions with solvent...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Champagne, P. A., J. Desroches, J.-D. Hamel, M. Vandamme and J.-F. Paquin (2015). “Monofluorination of Organic Compounds: 10 Years of Innovation.” Chem. Rev. 115(17): 9073–9174.

    Article  CAS  Google Scholar 

  2. Di Magno, S. G. and H. Sun (2006). “The strength of weak interactions: aromatic fluorine in drug design.” Curr. Top. Med. Chem. 6(14): 1473–1482.

    Article  Google Scholar 

  3. Hagmann, W. K. (2008).”The Many Roles for Fluorine in Medicinal Chemistry.” J. Med. Chem. 51(15): 4359–4369.

    Article  CAS  Google Scholar 

  4. Muller, K., C. Faeh and F. Diederich (2007). “Fluorine in pharmaceuticals: looking beyond intuition.” Science 317(5846): 1881–1886.

    Article  Google Scholar 

  5. Ni, C., M. Hu and J. Hu (2015). “Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis.” Chem. Rev. 115(2): 765–825.

    Article  CAS  Google Scholar 

  6. O’Hagan, D. (2010). “Fluorine in health care: Organofluorine containing blockbuster drugs.” J. Fluorine Chem. 131(11): 1071–1081.

    Article  Google Scholar 

  7. Percy, J. M. (1997). “Building block approaches to aliphatic organofluorine compounds.” Top. Curr. Chem. 193(Organofluorine Chemistry): 131–195.

    Article  CAS  Google Scholar 

  8. Gallagher, B. M., J. S. Fowler, N. I. Gutterson, R. R. MacGregor, C.-N. Wan and A. P. Wolf (1978). “Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]-2-deoxy-2-fluoro-D-glucose.” J. Nucl. Med. 19(10): 1154–1161.

    CAS  Google Scholar 

  9. Kim, D. W., D.-S. Ahn, Y.-H. Oh, S. Lee, H. S. Kil, S. J. Oh, S. J. Lee, J. S. Kim, J. S. Ryu, D. H. Moon and D. Y. Chi (2006). “A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules.” J. Am. Chem. Soc. 128(50): 16394–16397.

    Article  CAS  Google Scholar 

  10. Okarvi, S. M. (2001). “Recent progress in fluorine-18 labelled peptide radiopharmaceuticals.” Eur. J. Nucl. Med. 28(7): 929–938.

    Article  CAS  Google Scholar 

  11. Young, H., R. Baum, U. Cremerius, K. Herholz, O. Hoekstra, A. A. Lammertsma, J. Pruim and P. Price (1999). “Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group.” Eur J Cancer 35(13): 1773–1782.

    Article  CAS  Google Scholar 

  12. Christe, K. O. and H. D. B. Jenkins (2003). “Quantitative Measure for the “Nakedness” of Fluoride Ion Sources.” J. Am. Chem. Soc. 125(31): 9457–9461.

    Article  CAS  Google Scholar 

  13. Christe, K. O., W. W. Wilson, R. D. Wilson, R. Bau and J. A. Feng (1990). “Syntheses, properties, and structures of anhydrous tetramethylammonium fluoride and its 1:1 adduct with trans-3-amino-2-butenenitrile.” J. Am. Chem. Soc. 112(21): 7619–7625.

    Article  CAS  Google Scholar 

  14. Harmon, K. M. and I. Gennick (1975). “Hydrogen bonding. V. Possible existence of strongly hydrogen-bonded water-fluoride and water-hydroxide complex anions, (F-.H2O)22- and (OH-.H2O)22-, in tetramethylammonium ion salt hydrates.” Inorg. Chem. 14(8): 1840–1845.

    Article  CAS  Google Scholar 

  15. Hayami, J., N. Ono and A. Kaji (1968). “Quaternary ammonium fluorides. A reagent for proton abstraction.” Tetrahedron Lett.(11): 1385–1386.

    Google Scholar 

  16. Sun, H. and S. G. DiMagno (2005). “Anhydrous Tetrabutylammonium Fluoride.” J. Am. Chem. Soc. 127(7): 2050–2051.

    Article  CAS  Google Scholar 

  17. Sun, H. and S. G. DiMagno (2007). “Competitive demethylation and substitution in N,N,N-trimethylanilinium fluorides.” J. Fluorine Chem. 128(7): 806–812.

    Article  CAS  Google Scholar 

  18. Sun, H. and S. G. DiMagno (2007). “Fluoride relay: a new concept for the rapid preparation of anhydrous nucleophilic fluoride salts from KF.” Chem. Commun.(5): 528–529.

    Google Scholar 

  19. Sun, H., B. Wang and S. G. DiMagno (2008). “Ion pairing of “weaklycoordinated” fluoride salts.” Chemistry Today 26(3): 4–6.

    Google Scholar 

  20. Pfeifer, L., K. M. Engle, G. W. Pidgeon, H. A. Sparkes, A. L. Thompson, J. M. Brown and V. Gouverneur (2016). “Hydrogen-Bonded Homoleptic Fluoride-Diarylurea Complexes: Structure, Reactivity, and Coordinating Power.” J. Am. Chem. Soc. 138(40): 13314–13325.

    Article  CAS  Google Scholar 

  21. Cox, D. P., J. Terpinski and W. Lawrynowicz (1984). “\“Anhydrous\” tetrabutylammonium fluoride: a mild but highly efficient source of nucleophilic fluoride ion.” J. Org. Chem. 49(17): 3216–3219.

    Article  CAS  Google Scholar 

  22. Sharma, R. K. and J. L. Fry (1983). “Instability of anhydrous tetra-n-alkylammonium fluorides.” J. Org. Chem. 48(12): 2112–2114.

    Article  CAS  Google Scholar 

  23. Sun, H. and S. G. DiMagno (2006). “Room-temperature nucleophilic aromatic fluorination: experimental and theoretical studies.” Angew. Chem., Int. Ed. 45(17): 2720–2725.

    Article  CAS  Google Scholar 

  24. Kumar, M. B. (2002). “Tetrabutylammonium fluoride: TBAF.” Synlett(12): 2125–2126.

    Google Scholar 

  25. Heuft, M. A., S. K. Collins, G. P. A. Yap and A. G. Fallis (2001). “Synthesis of Diynes and Tetraynes from in Situ Desilylation/Dimerization of Acetylenes.” Org. Lett. 3(18): 2883–2886.

    Article  CAS  Google Scholar 

  26. Jacquemard, U., V. Beneteau, M. Lefoix, S. Routier, J.-Y. Merour and G. Coudert (2004). “Mild and selective deprotection of carbamates with Bu4NF.” Tetrahedron 60(44): 10039–10047.

    Article  CAS  Google Scholar 

  27. Kim, D. W., H.-J. Jeong, S. T. Lim and M.-H. Sohn (2008). “Tetrabutylammonium tetra (tert-butyl alcohol)-coordinated fluoride as a facile fluoride source.” Angew. Chem., Int. Ed. 47(44): 8404–8406.

    Article  CAS  Google Scholar 

  28. Kim, D. W., H.-J. Jeong, S. T. Lim and M.-H. Sohn (2010). “Facile nucleophilic fluorination of primary alkyl halides using tetrabutylammonium fluoride in a tert-alcohol medium.” Tetrahedron Lett. 51(2): 432–434.

    Article  CAS  Google Scholar 

  29. Engle, K. M., L. Pfeifer, G. W. Pidgeon, G. T. Giuffredi, A. L. Thompson, R. S. Paton, J. M. Brown and V. Gouverneur (2015). “Coordination diversity in hydrogen-bonded homoleptic fluoride-alcohol complexes modulates reactivity.” Chem. Sci. 6(9): 5293–5302.

    Article  CAS  Google Scholar 

  30. Blasiak, L. C. and C. L. Drennan (2009). “Structural Perspective on Enzymatic Halogenation.” Acc. Chem. Res. 42(1): 147–155.

    Article  CAS  Google Scholar 

  31. Carvalho, M. F. and R. S. Oliveira (2017). “Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme.” Crit. Rev. Biotechnol.: Ahead of Print.

    Google Scholar 

  32. Lee, J.-W., M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim and C. E. Song (2016). “Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography.” Chem. Soc. Rev. 45(17): 4638–4650.

    Article  CAS  Google Scholar 

  33. O’Hagan, D. and H. Deng (2015). “Enzymatic Fluorination and Biotechnological Developments of the Fluorinase.” Chem. Rev. 115(2): 634–649.

    Article  Google Scholar 

  34. Sun, H., W. L. Yeo, Y. H. Lim, X. Chew, D. J. Smith, B. Xue, K. P. Chan, R. C. Robinson, E. G. Robins, H. Zhao and E. L. Ang (2016). “Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate.” Angew. Chem., Int. Ed. 55(46): 14277–14280.

    Article  CAS  Google Scholar 

  35. Bosch, P., F. Camps, E. Chamorro, V. Gasol and A. Guerrero (1987). “Tetrabutylammonium bifluoride: a versatile and efficient fluorinating agent.” Tetrahedron Lett. 28(40): 4733–4736.

    Article  CAS  Google Scholar 

  36. Shenderovich, I. G., S. N. Smirnov, G. S. Denisov, V. A. Gindin, N. S. Golubev, A. Dunger, R. Reibke, S. Kirpekar, O. L. Malkina and H. H. Limbach (1998). “Nuclear magnetic resonance of hydrogen-bonded clusters between F- and (HF)n. Experiment and theory.” Berichte der Bunsen-Gesellschaft 102(3): 422–428.

    Article  CAS  Google Scholar 

  37. Bennett, B. K., R. G. Harrison and T. G. Richmond (1994). “Cobaltocenium Fluoride: A Novel Source of “Naked” Fluoride Formed by Carbon-Fluorine Bond Activation in a Saturated Perfluorocarbon.” J. Am. Chem. Soc. 116(24): 11165–11166.

    Article  CAS  Google Scholar 

  38. Pilcher, A. S., H. L. Ammon and P. DeShong (1995). “Utilization of Tetrabutylammonium Triphenylsilyldifluoride as a Fluoride Source for Nucleophilic Fluorination.” J. Am. Chem. Soc. 117(18): 5166–5167.

    Article  CAS  Google Scholar 

  39. Moughamir, K., A. Atmani, H. Mestdagh, C. Rolando and C. Francesch (1998). “Activation of tetrabutylammonium hydrogen difluoride with pyridine: a mild and efficient procedure for nucleophilic fluorination.” Tetrahedron Lett. 39(40): 7305–7306.

    Article  CAS  Google Scholar 

  40. Akiyama, Y., C. Hiramatsu, T. Fukuhara and S. Hara (2006). “Selective introduction of a fluorine atom into carbohydrates and a nucleoside by ring-opening fluorination reaction of epoxides.” J. Fluorine Chem. 127(7): 920–923.

    Article  CAS  Google Scholar 

  41. Shimizu, M., Y. Nakahara and H. Yoshioka (1985). “Chemoselective fluorination for primary alcohols.” Tetrahedron Lett. 26(35): 4207–4210.

    Article  CAS  Google Scholar 

  42. Park, C., B. S. Lee and D. Y. Chi (2013). “High Efficiency Synthesis of F-18 Fluoromethyl Ethers: An Attractive Alternative for C-11 Methyl Groups in Positron Emission Tomography Radiopharmaceuticals.” Org. Lett. 15(17): 4346–4349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Sun, H., Dimagno, S.G. (2018). TBAF Fluorination for Preparing Alkyl Fluorides. In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-1855-8_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1855-8_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1855-8

  • Online ISBN: 978-981-10-1855-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    TBAF Fluorination for Preparing Alkyl Fluorides
    Published:
    23 January 2018

    DOI: https://doi.org/10.1007/978-981-10-1855-8_14-2

  2. Original

    TBAF Fluorination for Preparing Alkyl Fluorides
    Published:
    28 September 2017

    DOI: https://doi.org/10.1007/978-981-10-1855-8_14-1