Skip to main content

Detecting Targets Without Thermal Cycling in Food: Isothermal Amplification and Hybridization

  • Chapter
  • First Online:
Functional Nucleic Acids Detection in Food Safety

Abstract

Isothermal technology is an option for point-of-care diagnosis to replace PCR amplification. Recently, this approach has been updated into a simple, rapid, and cost-effective tool. The input can be defined as DNA, RNA, or certain artificial nucleic acids, and the output response can be an amplified signal or catalytic chemical reaction, which allowing biosensing assays on various classes of biomolecules. The isothermal technologies used in the food safety detection can be classified into the following two categories: amplification and hybridization. Each category includes various methods designed to achieve a rapid and sensitive diagnose. Additionally, isothermal methods have made progress in the single cell analysis due to the unbiased, linear nature of the amplification process. This review mainly describes specific isothermal detection techniques to give a better understanding of the method of choice when performing fast and simple point-of-care detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissensteiner T, Nolan T, Bustin SA, Griffin HG, Griffin A. PCR technology: current innovations. Boca Raton: CRC press; 2003.

    Google Scholar 

  2. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO. Isothermal amplified detection of DNA and RNA. Mol BioSyst. 2014;10(5):970–1003.

    Article  CAS  PubMed  Google Scholar 

  3. Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR protocols: a guide to methods and applications. San Diego: Academic; 2012.

    Google Scholar 

  4. Kim J, Easley CJ. Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis. 2011;3(2):227–39.

    Article  CAS  PubMed  Google Scholar 

  5. Logan JMJ, Edwards KJ, Saunders NA. Real-time PCR: current technology and applications. Norfolk: Horizon Scientific Press; 2009.

    Google Scholar 

  6. Li J, Macdonald J. Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron. 2015;64:196–211.

    Article  CAS  PubMed  Google Scholar 

  7. Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta. 2015;853:30–45.

    Article  CAS  PubMed  Google Scholar 

  8. Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies—a review. Nucleosides Nucleotides Nucleic Acids. 2008;27(3):224–43.

    Article  CAS  PubMed  Google Scholar 

  9. Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip. 2012;12(14):2469–86.

    Article  CAS  PubMed  Google Scholar 

  10. Chang C-C, Chen C-C, Wei S-C, Lu H-H, Liang Y-H, Lin C-W. Diagnostic devices for isothermal nucleic acid amplification. Sensors. 2012;12(6):8319–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asiello PJ, Baeumner AJ. Miniaturized isothermal nucleic acid amplification, a review. Lab Chip. 2011;11(8):1420–30.

    Article  CAS  PubMed  Google Scholar 

  12. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.

    Article  CAS  PubMed  Google Scholar 

  13. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.

    Article  CAS  PubMed  Google Scholar 

  14. Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl Environ Microbiol. 2003;69(8):5023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill J, Beriwal S, Chandra I, Paul VK, Kapil A, Singh T, Wadowsky RM, Singh V, Goyal A, Jahnukainen T. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol. 2008;46(8):2800–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett. 2005;253(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  17. Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Van Tu P, Tien NTK, Tashiro M, Odagiri T. Rapid diagnosis of H5N1 avian influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated isothermal amplification method. J Virol Methods. 2007;141(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  18. Kono T, Savan R, Sakai M, Itami T. Detection of white spot syndrome virus in shrimp by loop-mediated isothermal amplification. J Virol Methods. 2004;115(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao X, Li Y, Wang L, You L, Xu Z, Li L, He X, Liu Y, Wang J, Yang L. Development and application of a loop-mediated isothermal amplification method on rapid detection Escherichia coli O157 strains from food samples. Mol Biol Rep. 2010;37(5):2183–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y. Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol. 2005;71(11):6730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Shi L, Alam MJ, Geng Y, Li L. Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res Int. 2008;41(1):69–74.

    Article  CAS  Google Scholar 

  22. Li X, Zhang S, Zhang H, Zhang L, Tao H, Yu J, Zheng W, Liu C, Lü D, Xiang R. A loop-mediated isothermal amplification method targets the phoP gene for the detection of Salmonella in food samples. Int J Food Microbiol. 2009;133(3):252–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ueda S, Kuwabara Y. The rapid detection of Salmonella from food samples by loop-mediated isothermal amplification (LAMP). Biocontrol Sci. 2009;14(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  24. Chen S, Wang F, Beaulieu JC, Stein RE, Ge B. Rapid detection of viable salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Appl Environ Microbiol. 2011;77(12):4008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamazaki W, Taguchi M, Ishibashi M, Kitazato M, Nukina M, Misawa N, Inoue K. Development and evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Campylobacter jejuni and Campylobacter coli. J Med Microbiol. 2008;57(4):444–51.

    Article  CAS  PubMed  Google Scholar 

  26. Tian CD, Zhang YZ, Ma XY, Zhang W, Wang J. Study on detection of vibrio parahaemolyticus in shellfish by use of loop‐mediated isothermal amplification method. J Food Saf. 2011;31(3):371–8.

    Article  CAS  Google Scholar 

  27. Nemoto J, Sugawara C, Akahane K, Hashimoto K, Kojima T, Ikedo M, Konuma H, Hara-Kudo Y. Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification. J Food Prot. 2009;72(4):748–54.

    CAS  PubMed  Google Scholar 

  28. Yamazaki W, Taguchi M, Kawai T, Kawatsu K, Sakata J, Inoue K, Misawa N. Comparison of loop-mediated isothermal amplification assay and conventional culture methods for detection of Campylobacter jejuni and Campylobacter coli in naturally contaminated chicken meat samples. Appl Environ Microbiol. 2009;75(6):1597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamazaki W, Kumeda Y, Misawa N, Nakaguchi Y, Nishibuchi M. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species. Appl Environ Microbiol. 2010;76(3):820–8.

    Article  CAS  PubMed  Google Scholar 

  30. Yamazaki W, Kumeda Y, Uemura R, Misawa N. Evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Vibrio parahaemolyticus in naturally contaminated seafood samples. Food Microbiol. 2011;28(6):1238–41.

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki W, Ishibashi M, Kawahara R, Inoue K. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol. 2008;8(1):163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhao X, Wang L, Chu J, Li Y, Li Y, Xu Z, Li L, Shirtliff ME, He X, Liu Y. Rapid detection of Vibrio parahaemolyticus strains and virulent factors by loop-mediated isothermal amplification assays. Food Sci Biotechnol. 2010;19(5):1191–7.

    Article  Google Scholar 

  33. Wang L, Zhong Q, Li Y. Ethidium monoazide-loop mediated isothermal amplification for rapid detection of Vibrio parahaemolyticus in viable but non-culturable state. Energy Procedia. 2012;17:1858–63.

    Article  CAS  Google Scholar 

  34. Fang X, Liu Y, Kong J, Jiang X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem. 2010;82(7):3002–6.

    Article  CAS  PubMed  Google Scholar 

  35. Karanis P, Thekisoe O, Kiouptsi K, Ongerth J, Igarashi I, Inoue N. Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of Cryptosporidium oocysts in fecal and water samples. Appl Environ Microbiol. 2007;73(17):5660–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang M-J, Zhou S, Zhang X-Y, Pu J-H, Ge Q-L, Tang X-J, Gao Y-S. Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. Curr Microbiol. 2011;63(6):511–6.

    Article  CAS  PubMed  Google Scholar 

  37. Shan X, Zhang Y, Zhang Z, Chen M, Su Y, Yuan Y, Alam MJ, Yan H, Shi L. Rapid detection of food-borne Listeria monocytogenes by real-time quantitative loop-mediated isothermal amplification. Food Sci Biotechnol. 2012;21(1):101–6.

    Article  CAS  Google Scholar 

  38. Wan C, Yang Y, Xu H, Aguilar ZP, Liu C, Lai W, Xiong Y, Xu F, Wei H. Development of a propidium monoazide treatment combined with loop‐mediated isothermal amplification (PMA‐LAMP) assay for rapid detection of viable Listeria monocytogenes. Int J Food Sci Technol. 2012;47(11):2460–7.

    Article  CAS  Google Scholar 

  39. Wang D, Huo G, Ren D, Li Y. Development and evaluation of a loop‐mediated isothermal amplification (LAMP) method for detecting listeria monocytogenes in raw milk. J Food Saf. 2010;30(2):251–62.

    Article  CAS  Google Scholar 

  40. Niessen L, Gräfenhan T, Vogel RF. ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. Int J Food Microbiol. 2012;158(3):171–85.

    Article  CAS  PubMed  Google Scholar 

  41. Denschlag C, Rieder J, Vogel RF, Niessen L. Real-time loop-mediated isothermal amplification (LAMP) assay for group specific detection of important trichothecene producing Fusarium species in wheat. Int J Food Microbiol. 2014;177:117–27.

    Article  CAS  PubMed  Google Scholar 

  42. Pavan Kumar P, Agarwal RK, Thomas P, Sailo B, Prasannavadhana A, Kumar A, Kataria JL, Singh DK. Rapid detection of Salmonella enterica subspecies enterica serovar Typhimurium by loop mediated isothermal amplification (LAMP) test from field chicken meat samples. Food Biotechnol. 2014;28(1):50–62.

    Article  CAS  Google Scholar 

  43. Zhai S, Liu C, Zhang Q, Tao C, Liu B. Detection of two exogenous genes in transgenic cattle by loop-mediated isothermal amplification. Transgenic Res. 2012;21(6):1367–73.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang G, Brown EW, González-Escalona N. Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl Environ Microbiol. 2011;77(18):6495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu S-m, Wu J-j, Xu C, Qu J, Cheng W, Chen F-s. Rapid detection of salmonella spp. by loop-mediated isothermal amplification method. Mod Food Sci Technol. 2008;7:036.

    Google Scholar 

  46. Techathuvanan C, D’Souza DH. Reverse‐transcriptase loop‐mediated isothermal amplification as a rapid screening/monitoring tool for Salmonella Enterica detection in liquid whole eggs. J Food Sci. 2012;77(4):M200–5.

    Article  CAS  PubMed  Google Scholar 

  47. Techathuvanan C, Draughon FA, D’Souza DH. Loop‐mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Salmonella Typhimurium from pork. J Food Sci. 2010;75(3):M165–72.

    Article  CAS  PubMed  Google Scholar 

  48. Techathuvanan C, Draughon FA, D’Souza DH. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments. J Food Prot. 2011;74(2):294–301.

    Article  CAS  PubMed  Google Scholar 

  49. Ravan H, Yazdanparast R. Development of a new loop-mediated isothermal amplification assay for prt (rfbS) gene to improve the identification of Salmonella serogroup D. World J Microbiol Biotechnol. 2012;28(5):2101–6.

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Zheng W, Zhang H, Hou Y, Liu Y. Sensitive and rapid detection of Enterobacter sakazakii in infant formula by loop‐mediated isothermal amplification method. J Food Saf. 2009;29(1):83–94.

    Article  CAS  Google Scholar 

  51. Liu X, Fang J, Zhang M, Wang X, Wang W, Gong Y, Xi X, Li M. Development of a loop-mediated isothermal amplification assay for detection of Cronobacter spp. (Enterobacter sakazakii). World J Microbiol Biotechnol. 2012;28(3):1013–20.

    Article  PubMed  CAS  Google Scholar 

  52. DeGuo W, LiJie Y, GuiCheng H, FuGui W, YongGang L, Daxi R. Development of a loop-mediated isothermal amplification (LAMP) method for detecting food-borne Shigella in raw milk. Milchwissenschaft. 2009;64(3):264–7.

    Google Scholar 

  53. Li C, Ying Q, Su X, Li T. Development and application of reverse transcription loop‐mediated isothermal amplification for detecting live Shewanella putrefaciens in preserved fish sample. J Food Sci. 2012;77(4):M226–30.

    Article  CAS  PubMed  Google Scholar 

  54. Ohtsuki R, Kawamoto K, Kato Y, Shah M, Ezaki T, Makino SI. Rapid detection of Brucella spp. by the loop‐mediated isothermal amplification method. J Appl Microbiol. 2008;104(6):1815–23.

    Article  CAS  PubMed  Google Scholar 

  55. DeGuo W, GuiCheng H, JunLiang C, Sui Z, Daxi R, YongGang L. Development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detecting Staphylococcus aureus in raw milk. Milchwissenschaft. 2009;64(4):368–71.

    Google Scholar 

  56. Suwanampai T, Pattaragulvanit K, Pattanamahakul P, Sutheinkul O, Okada K, Honda T, Thaniyavarn J. Evaluation of loop-mediated isothermal amplification method for detecting enterotoxin A gene of Staphylococcus aureus in pork. Southeast Asian J Trop Med Public Health. 2011;42(6):1489.

    CAS  PubMed  Google Scholar 

  57. Nagarajappa S, Thakur MS, Manonmani HK. Detection of enterotoxigenic staphylococci by loop‐mediated isothermal amplification method. J Food Saf. 2012;32(1):59–65.

    Article  CAS  Google Scholar 

  58. Sakuma T, Kurosaki Y, Fujinami Y, Takizawa T, Yasuda J. Rapid and simple detection of Clostridium botulinum types A and B by loop‐mediated isothermal amplification. J Appl Microbiol. 2009;106(4):1252–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kaneko I, Miyamoto K, Mimura K, Yumine N, Utsunomiya H, Akimoto S, McClane BA. Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods. Appl Environ Microbiol. 2011;77(21):7526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen S, Ge B. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 2010;10(1):41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hayashi N, Arai R, Tada S, Taguchi H, Ogawa Y. Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method. Food Microbiol. 2007;24(7):778–85.

    Article  CAS  PubMed  Google Scholar 

  62. Ahmed MU, Hasan Q, Hossain MM, Saito M, Tamiya E. Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control. 2010;21(5):599–605.

    Article  CAS  Google Scholar 

  63. Yang L, Fu S, Peng X, Li L, Song T, Li L. Identification of pork in meat products using real-time loop-mediated isothermal amplification. Biotechnol Biotechnol Equip. 2014;28(5):882–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li M, Wong Y-L, Jiang L-L, Wong K-L, Wong Y-T, Bik-San Lau C, Shaw P-C. Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient Hedyotis diffusa Willd. Food Chem. 2013;141(3):2522–5.

    Article  CAS  PubMed  Google Scholar 

  65. Ran G, Ren L, Han X, Liu X, Li Z, Pang D, Ouyang H, Tang X. Development of a rapid method for the visible detection of pork DNA in Halal Products by loop-mediated isothermal amplification. Food Analytical Methods:1–6. 2015.

    Google Scholar 

  66. Zahradnik C, Martzy R, Mach RL, Krska R, Farnleitner AH, Brunner K. Loop-mediated isothermal amplification (LAMP) for the detection of horse meat in meat and processed meat products. Food Analytical Methods:1–6. 2014.

    Google Scholar 

  67. Luo J, Vogel RF, Niessen L. Development and application of a loop-mediated isothermal amplification assay for rapid identification of aflatoxigenic molds and their detection in food samples. Int J Food Microbiol. 2012;159(3):214–24.

    Article  CAS  PubMed  Google Scholar 

  68. Luo J, Taniwaki MH, Iamanaka BT, Vogel RF, Niessen L. Application of loop-mediated isothermal amplification assays for direct identification of pure cultures of Aspergillus flavus, A. nomius, and A. caelatus and for their rapid detection in shelled Brazil nuts. Int J Food Microbiol. 2014;172:5–12.

    Article  CAS  PubMed  Google Scholar 

  69. Storari M, Rohr R, Pertot I, Gessler C, Broggini GAL. Identification of ochratoxin A producing Aspergillus carbonarius and A. niger clade isolated from grapes using the loop‐mediated isothermal amplification (LAMP) reaction. J Appl Microbiol. 2013;114(4):1193–200.

    Article  CAS  PubMed  Google Scholar 

  70. Yuan Y, Wei S, Liu G, Xie S, Chai Y, Yuan R. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification. Anal Chim Acta. 2014;811:70–5.

    Article  CAS  PubMed  Google Scholar 

  71. Chen X, Wang X, Jin N, Zhou Y, Huang S, Miao Q, Zhu Q, Xu J. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Int J Mol Sci. 2012;13(11):14421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Q, Fang J, Liu X, Xi X, Li M, Gong Y, Zhang M. Loop-mediated isothermal amplification (LAMP) method for rapid detection of cry1Ab gene in transgenic rice (Oryza sativa L.). Eur Food Res Technol. 2013;236(4):589–98.

    Article  CAS  Google Scholar 

  73. Di H, Shi L, Shen H, Yan H, Meng H, Li L, Alam MJ, Yamasaki S, Ye L. Rapid detection of genetically modified ingredients in soybean products by real-time loop-mediated isothermal amplification. J Food Nutr Res. 2014;2(7):363–8.

    Article  Google Scholar 

  74. Zhang M, Liu Y, Chen L, Quan S, Jiang S, Zhang D, Yang L. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms. Anal Chem. 2012;85(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang F, Wang L, Fan K, Wu J, Ying Y. The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence. Anal Bioanal Chem. 2014;406(13):3069–78.

    Article  CAS  PubMed  Google Scholar 

  76. Guan X, Guo J, Shen P, Yang L, Zhang D. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Anal Methods. 2010;3(4):313–20.

    Article  Google Scholar 

  77. Lee D, La Mura M, Allnutt TR, Powell W. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences. BMC Biotechnol. 2009;9(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fukuta S, Mizukami Y, Ishida A, Ueda J, Hasegawa M, Hayashi I, Hashimoto M, Kanbe M. Real-time loop-mediated isothermal amplification for the CaMV-35S promoter as a screening method for genetically modified organisms. Eur Food Res Technol. 2004;218(5):496–500.

    Article  CAS  Google Scholar 

  79. Chen L, Guo J, Wang Q, Kai G, Yang L. Development of the visual loop-mediated isothermal amplification assays for seven genetically modified maize events and their application in practical samples analysis. J Agric Food Chem. 2011;59(11):5914–8.

    Article  CAS  PubMed  Google Scholar 

  80. Kiddle G, Hardinge P, Buttigieg N, Gandelman O, Pereira C, McElgunn CJ, Rizzoli M, Jackson R, Appleton N, Moore C. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol. 2012;12(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu J, Zheng Q, Yu L, Liu R, Zhao X, Wang G, Wang Q, Cao J. Loop‐mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25. Food Sci Nutr. 2013;1(6):432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang S, Xu Y, Yan X, Shang Y, Zhu P, Tian W, Xu W. Development and application of a quantitative loop‐mediated isothermal amplification method for detecting genetically modified maize MON863. J Sci Food Agric. 2015;95(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  83. Li F, Yan W, Long L, Qi X, Li C, Zhang S. Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops. Int J Mol Sci. 2014;15(9):15109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng Y, Zhang M, Hu K, Sun F, Tao R, Gao X, Luan F. Loop-mediated isothermal amplification for the event-specific detection of wheat B73-6-1. Food Anal Methods. 2014;7(2):500–5.

    Article  Google Scholar 

  85. Tao C, Zhang Q, Zhai S, Liu B. Detection of HbsAg and hATIII genetically modified goats (Caprahircus) by loop-mediated isothermal amplification. Mol Biol Rep. 2013;40(11):6177–82.

    Article  CAS  PubMed  Google Scholar 

  86. He J-L, Wu Z-S, Zhou H, Wang H-Q, Jiang J-H, Shen G-L, Yu R-Q. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal Chem. 2010;82(4):1358–64.

    Article  CAS  PubMed  Google Scholar 

  87. Walker GT, Nadeau JG, Spears PA, Schram JL, Nycz CM, Shank DD. Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria. Nucleic Acids Res. 1994;22(13):2670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hellyer T, DesJardin L, Teixeira L, Perkins M, Cave M, Eisenach K. Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol. 1999;37(3):518–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ge B, Larkin C, Ahn S, Jolley M, Nasir M, Meng J, Hall R. Identification of Escherichia coli O157: H7 and other enterohemorrhagic serotypes by EHEC-hly A targeting, strand displacement amplification, and fluorescence polarization. Mol Cell Probes. 2002;16(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  90. Kiesling T, Cox K, Davidson EA, Dretchen K, Grater G, Hibbard S, Lasken RS, Leshin J, Skowronski E, Danielsen M. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res. 2007;35(18), e117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bi S, Cui Y, Li L. Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Anal Chim Acta. 2013;760:69–74.

    Article  CAS  PubMed  Google Scholar 

  92. Yin B-C, Liu Y-Q, Ye B-C. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc. 2012;134(11):5064–7.

    Article  CAS  PubMed  Google Scholar 

  93. Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosens Bioelectron. 2013;39(1):145–51.

    Article  PubMed  CAS  Google Scholar 

  94. Murakami T, Sumaoka J, Komiyama M. Sensitive isothermal detection of nucleic-acid sequence by primer generation–rolling circle amplification. Nucleic Acids Res. 2009;37(3):e19.

    Article  PubMed  CAS  Google Scholar 

  95. Long Y, Zhou X, Xing D. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. Biosens Bioelectron. 2011;26(6):2897–904.

    Article  CAS  PubMed  Google Scholar 

  96. Sato K, Tachihara A, Renberg B, Mawatari K, Sato K, Tanaka Y, Jarvius J, Nilsson M, Kitamori T. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip. 2010;10(10):1262–6.

    Article  CAS  PubMed  Google Scholar 

  97. Haible D, Kober S, Jeske H. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods. 2006;135(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  98. Niel C, Diniz-Mendes L, Devalle S. Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol. 2005;86(5):1343–7.

    Article  CAS  PubMed  Google Scholar 

  99. Schubert J, Habekuß A, Kazmaier K, Jeske H. Surveying cereal-infecting geminiviruses in Germany—diagnostics and direct sequencing using rolling circle amplification. Virus Res. 2007;127(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  100. Zhou X, Kong F, Sorrell TC, Wang H, Duan Y, Chen SC. Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification. J Clin Microbiol. 2008;46(7):2423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Smolina I, Lee C, Frank-Kamenetskii M. Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization. Appl Environ Microbiol. 2007;73(7):2324–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mahmoudian L, Kaji N, Tokeshi M, Nilsson M, Baba Y. Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. Anal Chem. 2008;80(7):2483–90.

    Article  CAS  PubMed  Google Scholar 

  103. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly sensitive determination of microRNA using target‐primed and branched rolling‐circle amplification. Angew Chem. 2009;121(18):3318–22.

    Article  Google Scholar 

  104. Ma C, Wang W, Yang Q, Shi C, Cao L. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosens Bioelectron. 2011;26(7):3309–12.

    Article  CAS  PubMed  Google Scholar 

  105. Tong P, Zhao W-W, Zhang L, Xu J-J, Chen H-Y. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens Bioelectron. 2012;33(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  106. Tang S, Tong P, Li H, Tang J, Zhang L. Ultrasensitive electrochemical detection of Pb 2+ based on rolling circle amplification and quantum dots tagging. Biosens Bioelectron. 2013;42:608–11.

    Article  CAS  PubMed  Google Scholar 

  107. Li W, Yang Y, Chen J, Zhang Q, Wang Y, Wang F, Yu C. Detection of lead (II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosens Bioelectron. 2014;53:245–9.

    Article  CAS  PubMed  Google Scholar 

  108. Yu Y, Chen Z, Jian W, Sun D, Zhang B, Li X, Yao M. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosens Bioelectron. 2015;64:566–71.

    Article  CAS  PubMed  Google Scholar 

  109. Mahalanabis M, Do J, ALMuayad H, Zhang JY, Klapperich CM. An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices. 2010;12(2):353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chow WHA, McCloskey C, Tong Y, Hu L, You Q, Kelly CP, Kong H, Tang Y-W, Tang W. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn. 2008;10(5):452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andresen D, von Nickisch-Rosenegk M, Bier FF. Helicase dependent OnChip-amplification and its use in multiplex pathogen detection. Clin Chim Acta. 2009;403(1):244–8.

    Article  CAS  PubMed  Google Scholar 

  112. Gill P, Amini M, Ghaemi A, Shokouhizadeh L, Abdul-Tehrani H, Karami A, Gilak A. Detection of Helicobacter pylori by enzyme-linked immunosorbent assay of thermophilic helicase-dependent isothermal DNA amplification. Diagn Microbiol Infect Dis. 2007;59(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  113. Morisset D, Dobnik D, Hamels S, Žel J, Gruden K. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs. Nucleic Acids Res. 2008;36(18):e118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Uyttendaele M, Schukkink R, Van Gemen B, Debevere J. Development of NASBA®, a nucleic acid amplification system, for identification of Listeria monocytogenes and comparison to ELISA and a modified FDA method. Int J Food Microbiol. 1995;27(1):77–89.

    Article  CAS  PubMed  Google Scholar 

  115. Blais BW, Turner G, Sooknanan R, Malek LT. A nucleic acid sequence-based amplification system for detection of Listeria monocytogenes hlyA sequences. Appl Environ Microbiol. 1997;63(1):310–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Loeffler J, Hebart H, Cox P, Flues N, Schumacher U, Einsele H. Nucleic acid sequence-based amplification of aspergillus RNA in blood samples. J Clin Microbiol. 2001;39(4):1626–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jean J, D’souza DH, Jaykus L-A. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods. Appl Environ Microbiol. 2004;70(11):6603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jean J, Blais B, Darveau A, Fliss IL. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR. Appl Environ Microbiol. 2001;67(12):5593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lamhoujeb S, Fliss I, Ngazoa SE, Jean J. Evaluation of the persistence of infectious human noroviruses on food surfaces by using real-time nucleic acid sequence-based amplification. Appl Environ Microbiol. 2008;74(11):3349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rutjes SA, van den Berg HH, Lodder WJ, de Roda Husman AM. Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay. Appl Environ Microbiol. 2006;72(8):5349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Uyttendaele M, Schukkink R, Van Gemen B, Debevere J. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA). Appl Environ Microbiol. 1995;61(4):1341–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fykse EM, Skogan G, Davies W, Olsen JS, Blatny JM. Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol. 2007;73(5):1457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. D’Souza D, Jaykus LA. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. J Appl Microbiol. 2003;95(6):1343–50.

    Article  PubMed  CAS  Google Scholar 

  124. Cook N, Ellison J, Kurdziel A, Simpkins S, Hays J. A nucleic acid sequence-based amplification method to detect Salmonella enterica serotype enteritidis strain PT4 in liquid whole egg. J Food Prot. 2002;65(7):1177–8.

    CAS  PubMed  Google Scholar 

  125. Zhao X, Dong T. Multifunctional sample preparation kit and on-chip quantitative nucleic acid sequence-based amplification tests for microbial detection. Anal Chem. 2012;84(20):8541–8.

    Article  CAS  PubMed  Google Scholar 

  126. Mollasalehi H, Yazdanparast R. Development and evaluation of a novel nucleic acid sequence-based amplification method using one specific primer and one degenerate primer for simultaneous detection of Salmonella Enteritidis and Salmonella Typhimurium. Anal Chim Acta. 2013;770:169–74.

    Article  CAS  PubMed  Google Scholar 

  127. Zhao X, Dong T, Yang Z, Pires N, Høivik N. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation. Lab Chip. 2012;12(3):602–12.

    Article  CAS  PubMed  Google Scholar 

  128. Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull. 2012;64(2):200–6.

    Article  CAS  PubMed  Google Scholar 

  129. Moore C, Telles J-N, Corden S, Gao R-B, Vernet G, Van Aarle P, Shu Y-L. Development and validation of a commercial real-time NASBA assay for the rapid confirmation of influenza A H5N1 virus in clinical samples. J Virol Methods. 2010;170(1):173–6.

    Article  CAS  PubMed  Google Scholar 

  130. Xu C, Li L, Jin W, Wan Y. Recombinase Polymerase Amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops. Int J Mol Sci. 2014;15(10):18197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen F, Davydova EK, Du W, Kreutz JE, Piepenburg O, Ismagilov RF. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem. 2011;83(9):3533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta. 2014;181(13–14):1715–23.

    Article  CAS  Google Scholar 

  133. Santiago-Felipe S, Tortajada-Genaro L, Puchades R, Maquieira A. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta. 2014;811:81–7.

    Article  CAS  PubMed  Google Scholar 

  134. del Río JS, Adly NY, Acero-Sánchez JL, Henry OY, O’Sullivan CK. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron. 2014;54:674–8.

    Article  PubMed  CAS  Google Scholar 

  135. Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, McPhee JE, Brown P, Weston A, Cardy DL. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29(11):e54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci. 1992;89(1):392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20(7):1691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Walker GT. Empirical aspects of strand displacement amplification. Genome Res. 1993;3(1):1–6.

    Article  CAS  Google Scholar 

  139. Spargo CA, Fraiser MS, Van Cleve M, Wright DJ, Nycz CM, Spears PA, Walker GT. Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Mol Cell Probes. 1996;10(4):247–56.

    Article  CAS  PubMed  Google Scholar 

  140. Hellyer TJ, Fletcher TW, Bates JH, Stead WW, Templeton GL, Cave MD, Eisenach KD. Strand displacement amplification and the polymerase chain reaction for monitoring response to treatment in patients with pulmonary tuberculosis. J Infect Dis. 1996;173(4):934–41.

    Article  CAS  PubMed  Google Scholar 

  141. Cosentino LA, Landers DV, Hillier SL. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by strand displacement amplification and relevance of the amplification control for use with vaginal swab specimens. J Clin Microbiol. 2003;41(8):3592–6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D. Genome coverage and sequence fidelity of φ29 polymerase‐based multiple strand displacement whole genome amplification. Nucleic Acids Res. 2004;32(9):e71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci. 1992;89(13):5847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol. 2012;10:631–40.

    Article  CAS  PubMed  Google Scholar 

  145. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009;15(2):62–9.

    Article  CAS  PubMed  Google Scholar 

  147. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16(3):223–9.

    Article  CAS  PubMed  Google Scholar 

  148. Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289(1):150–4.

    Article  CAS  PubMed  Google Scholar 

  149. Poon LLM, Wong BWY, Ma EHT, Chan KH, Chow LMC, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006;52(2):303–6.

    Article  CAS  PubMed  Google Scholar 

  150. Fall J, Chakraborty G, Kono T, Maeda M, Suzuki Y, Itami T, Sakai M. Quantitative loop-mediated isothermal amplification method for the detection of Vibrio nigripulchritudo in shrimp. Fish Sci. 2011;77(1):129–34.

    Article  CAS  Google Scholar 

  151. Mekata T, Sudhakaran R, Kono T, Supamattaya K, Linh NTH, Sakai M, Itami T. Real‐time quantitative loop‐mediated isothermal amplification as a simple method for detecting white spot syndrome virus. Lett Appl Microbiol. 2009;48(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  152. Aoi Y, Hosogai M, Tsuneda S. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J Biotechnol. 2006;125(4):484–91.

    Article  CAS  PubMed  Google Scholar 

  153. Toriniwa H, Komiya T. Rapid detection and quantification of Japanese encephalitis virus by real‐time reverse transcription loop‐mediated isothermal amplification. Microbiol Immunol. 2006;50(5):379–87.

    Article  CAS  PubMed  Google Scholar 

  154. Han F, Ge B. Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int J Food Microbiol. 2010;142(1):60–6.

    Article  PubMed  Google Scholar 

  155. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.

    Article  CAS  PubMed  Google Scholar 

  156. Kong H, Higgins LS, Dalton MA, Kucera RB, Schildkraut I, Wilson GG. N. bstnbi nicking endonuclease and methods for using endonucleases in single-stranded displacement amplification. Washington, DC. U.S Patent. 2003.

    Google Scholar 

  157. Zyrina NV, Zheleznaya LA, Dvoretsky EV, Vasiliev VD, Chernov A, Matvienko NI. N. BspD6I DNA nickase strongly stimulates template-independent synthesis of non-palindromic repetitive DNA by Bst DNA polymerase. Biol Chem. 2007;388(4):367–72.

    Article  CAS  PubMed  Google Scholar 

  158. Liang X, Jensen K, Frank-Kamenetskii MD. Very efficient template/primer-independent DNA synthesis by thermophilic DNA polymerase in the presence of a thermophilic restriction endonuclease. Biochemistry. 2004;43(42):13459–66.

    Article  CAS  PubMed  Google Scholar 

  159. Connolly AR, Trau M. Isothermal detection of DNA by beacon‐assisted detection amplification. Angew Chem. 2010;122(15):2780–3.

    Article  Google Scholar 

  160. Connolly AR, Trau M. Rapid DNA detection by beacon-assisted detection amplification. Nat Protoc. 2011;6(6):772–8.

    Article  CAS  PubMed  Google Scholar 

  161. Xu W, Wang C, Zhu P, Guo T, Xu Y, Huang K, Luo Y. Real-time quantitative nicking endonuclease-mediated isothermal amplification with small molecular beacons. Analyst. 2016;141:2542–52.

    Article  CAS  PubMed  Google Scholar 

  162. Zhao W, Ali MM, Brook MA, Li Y. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed. 2008;47(34):6330–7.

    Article  CAS  Google Scholar 

  163. Ali MM, Li F, Zhang Z, Zhang K, Kang D-K, Ankrum JA, Le XC, Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–41.

    Article  CAS  PubMed  Google Scholar 

  164. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–545.

    Article  CAS  PubMed  Google Scholar 

  165. Jarvius J, Melin J, Göransson J, Stenberg J, Fredriksson S, Gonzalez-Rey C, Bertilsson S, Nilsson M. Digital quantification using amplified single-molecule detection. Nat Methods. 2006;3(9):725–7.

    Article  CAS  PubMed  Google Scholar 

  166. Zhou L, Ou L-J, Chu X, Shen G-L, Yu R-Q. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem. 2007;79(19):7492–500.

    Article  CAS  PubMed  Google Scholar 

  167. Liu H, Li L, Duan L, Wang X, Xie Y, Tong L, Wang Q, Tang B. High specific and ultrasensitive isothermal detection of microrna by padlock probe-based exponential rolling circle amplification. Anal Chem. 2013;85(16):7941–7.

    Article  CAS  PubMed  Google Scholar 

  168. Van Ness J, Van Ness LK, Galas DJ. Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci. 2003;100(8):4504–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Li JJ, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res. 2000;28(11):e52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Qian J, Ferguson TM, Shinde DN, Ramírez-Borrero AJ, Hintze A, Adami C, Niemz A. Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Res. 2012;40(11):e87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nie J, Zhang D-W, Zhang F-T, Yuan F, Zhou Y-L, Zhang X-X. Reporter-triggered isothermal exponential amplification strategy in ultrasensitive homogeneous label-free electrochemical nucleic acid biosensing. Chem Commun. 2014;50(47):6211–3.

    Article  CAS  Google Scholar 

  172. Nie J, Zhang D-W, Tie C, Zhou Y-L, Zhang X-X. G-quadruplex based two-stage isothermal exponential amplification reaction for label-free DNA colorimetric detection. Biosens Bioelectron. 2014;56:237–42.

    Article  CAS  PubMed  Google Scholar 

  173. Jeong Y-J, Park K, Kim D-E. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci. 2009;66(20):3325–36.

    Article  CAS  PubMed  Google Scholar 

  174. Motré A, Li Y, Kong H. Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase. Gene. 2008;420(1):17–22.

    Article  PubMed  CAS  Google Scholar 

  175. Vincent M, Xu Y, Kong H. Helicase‐dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li Y, Jortani SA, Ramey-Hartung B, Hudson E, Lemieux B, Kong H. Genotyping three SNPs affecting warfarin drug response by isothermal real-time HDA assays. Clin Chim Acta. 2011;412(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  177. Kivlehan F, Mavré F, Talini L, Limoges B, Marchal D. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids. Analyst. 2011;136(18):3635–42.

    Article  CAS  PubMed  Google Scholar 

  178. Goldmeyer J, Kong H, Tang W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn. 2007;9(5):639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ramalingam N, San TC, Kai TJ, Mak MYM, Gong H-Q. Microfluidic devices harboring unsealed reactors for real-time isothermal helicase-dependent amplification. Microfluid Nanofluid. 2009;7(3):325–36.

    Article  CAS  Google Scholar 

  180. Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P. NASBA TM isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991;35(3):273–86.

    Article  CAS  PubMed  Google Scholar 

  181. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–2.

    Article  CAS  PubMed  Google Scholar 

  182. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci. 1990;87(5):1874–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol. 2002;20(2):163–79.

    Article  CAS  PubMed  Google Scholar 

  184. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987;15(21):8783–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yates S, Penning M, Goudsmit J, Frantzen I, Van De Weijer B, Van Strijp D, Van Gemen B. Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection. J Clin Microbiol. 2001;39(10):3656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Piepenburg O, Williams C, Stemple D, Armes N. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Harris LD, Griffith JD. Formation of D-loops by the UvsX protein of T4 bacteriophage: a comparison of the reaction catalyzed in the presence or absence of gene 32 protein. Biochemistry. 1988;27(18):6954–9.

    Article  CAS  PubMed  Google Scholar 

  188. Okazaki T, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid XV. Purification and properties of a polymerase from Bacillus subtilis. J Biol Chem. 1964;239(1):259–68.

    CAS  PubMed  Google Scholar 

  189. Hall M, Wharam S, Weston A, Cardy D, Wilson W. Use of signal-mediated amplification of RNA technology (SMART) to detect marine cyanophage DNA. Biotechniques. 2002;32(3):604–11.

    CAS  PubMed  Google Scholar 

  190. Wharam SD, Hall MJ, Wilson WH. Detection of virus mRNA within infected host cells using an isothermal nucleic acid amplification assay: marine cyanophage gene expression within Synechococcus sp. Virol J. 2007;4:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Ikbal J, Lim GS, Gao Z. The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. TrAC Trends Anal Chem. 2015;64:86–99.

    Article  CAS  Google Scholar 

  192. Evanko D. Hybridization chain reaction. Nat Methods. 2004;1(3):186–7.

    Article  CAS  Google Scholar 

  193. Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A. 2004;101(39):14036–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shimron S, Wang F, Orbach R, Willner I. Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Anal Chem. 2011;84(2):1042–8.

    Article  PubMed  CAS  Google Scholar 

  195. Bi S, Zhao T, Luo B, Zhu J-J. Hybridization chain reaction-based branched rolling circle amplification for chemiluminescence detection of DNA methylation. Chem Commun. 2013;49(61):6906–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology of Beijing (XX2014B069). Many thanks to Chenguang Wang for his kindly help in the manuscript conception and preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xu, W. (2016). Detecting Targets Without Thermal Cycling in Food: Isothermal Amplification and Hybridization. In: Functional Nucleic Acids Detection in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-10-1618-9_10

Download citation

Publish with us

Policies and ethics