Skip to main content

Application of cDFPT to Alkali-Doped Fullerides

  • Chapter
  • First Online:
Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides

Part of the book series: Springer Theses ((Springer Theses))

  • 326 Accesses

Abstract

To derive phonon-related terms in the realistic low-energy Hamiltonians for fcc \(\mathrm{A}_3\mathrm{C}_{60}\) systems, we apply a newly developed ab initio downfolding scheme, constrained density-functional perturbation theory (cDFPT). The effective interaction between the low-energy electrons is given by the sum of the Coulomb and phonon-mediated retarded interactions. By evaluating the latter contribution by the cDFPT and comparing it to a previously estimated Coulomb contribution, we show that an effectively negative exchange interaction is realized on each molecule in fcc \(\mathrm{A}_3\mathrm{C}_{60}\). This is because a contribution from the coupling to the Jahn-Teller phonons surpasses a small Hund’s coupling, turning the sign of the exchange interaction from positive to negative. We also present a comparison between the cDFPT and the conventional DFPT to get more insight into the phonon properties of the fullerides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In principle, the sum over \(\nu \) in Eq. (3.2) runs from 1 to 189. However, we omit the contribution from the lower 9 branches (\(\nu = \)1–9). They correspond to the acoustic modes, the librations, and the alkali-ion vibrations at the octahedral sites [8]. Within the present calculation, some of these vibrations have imaginary frequencies. The neglect can be justified since the couplings between these modes and the \(t_{1u}\) electrons are small [17, 20].

  2. 2.

    The two \(A_g\) modes can couple to the \(t_{1u}\) electrons, however, they do not exist in this range; the experimentally observed frequencies are 496 and 1470 cm\(^{-1}\) [29].

  3. 3.

    If the off-diagonal Green’s function \(G_{HL}\) is nonzero, we also have to take into account the processes involving \(G_{HL}\). However, the off-diagonal Green’s functions are usually very small compared to the diagonal ones, thus the effects of \(G_{HL}\) on the vertex correction \(\gamma \) are small.

References

  1. Y. Nomura, K. Nakamura, R. Arita, Phys. Rev. Lett. 112, 027002 (2014)

    Article  ADS  Google Scholar 

  2. Y. Nomura, K. Nakamura, R. Arita, Phys. Rev. B 85, 155452 (2012)

    Article  ADS  Google Scholar 

  3. O. Zhou, D.E. Cox, J. Phys. Chem. Solids 53(11), 1373 (1992)

    Article  ADS  Google Scholar 

  4. A.Y. Ganin, Y. Takabayashi, P. Jeglič, D. Arcǒn, A. Potočnik, P.J. Baker, Y. Ohishi, M.T. McDonald, M.D. Tzirakis, A. McLennan, G.R. Darling, M. Takata, M.J. Rosseinsky, K. Prassides, Nature 466, 221 (2010)

    Article  ADS  Google Scholar 

  5. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  6. http://www.quantum-espresso.org/

  7. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  8. R. Akashi, R. Arita, Phys. Rev. B 88, 054510 (2013)

    Article  ADS  Google Scholar 

  9. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  10. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  11. S.G. Louie, S. Froyen, M.L. Cohen, Phys. Rev. B 26, 1738 (1982)

    Article  ADS  Google Scholar 

  12. D.D. Koelling, B.N. Harmon, J. Phys. C Solid State Phys. 10(16), 3107 (1977)

    Article  ADS  Google Scholar 

  13. G. Giovannetti, M. Casula, P. Werner, F. Mauri, M. Capone, Phys. Rev. B 90, 115435 (2014)

    Article  ADS  Google Scholar 

  14. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  15. Y. Nomura, R. Arita, Phys. Rev. B 92, 245108 (2015)

    Article  ADS  Google Scholar 

  16. J. Bauer, J.E. Han, O. Gunnarsson, Phys. Rev. B 84, 184531 (2011)

    Article  ADS  Google Scholar 

  17. O. Gunnarsson, A.-D. Fullerides, Narrow-Band Solids with Unusual Properties ((World Scientific Publishing Co. Pte. Ltd., Singapore, 2004)

    Book  Google Scholar 

  18. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Westview Press, Boulder, Colorado, 1988)

    MATH  Google Scholar 

  19. F. Assaad, T. Lang, Phys. Rev. B 76, 035116 (2007)

    Article  ADS  Google Scholar 

  20. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997)

    Article  ADS  Google Scholar 

  21. Y. Nomura, S. Sakai, M. Capone, R. Arita, Sci. Adv. 1(7), e1500568 (2015)

    Article  ADS  Google Scholar 

  22. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130(11), 3296 (2008)

    Article  Google Scholar 

  23. K. Nakamura, R. Arita, M. Imada, J. Phys. Soc. Jpn. 77(9), 093711 (2008)

    Article  ADS  Google Scholar 

  24. T. Miyake, K. Nakamura, R. Arita, M. Imada, J. Phys. Soc. Jpn. 79(4), 044705 (2010)

    Article  ADS  Google Scholar 

  25. O. Gunnarsson, G. Zwicknagl, Phys. Rev. Lett. 69, 957 (1992)

    Article  ADS  Google Scholar 

  26. V.P. Antropov, O. Gunnarsson, A.I. Liechtenstein, Phys. Rev. B 48, 7651 (1993)

    Article  ADS  Google Scholar 

  27. Y. Nomura, S. Sakai, M. Capone, R. Arita, J. Phys. Condens. Matter 28(15), 153001 (2016)

    Article  ADS  Google Scholar 

  28. P. Zhou, K.A. Wang, A.M. Rao, P.C. Eklund, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 10838 (1992)

    Article  ADS  Google Scholar 

  29. D.S. Bethune, G. Meijer, W.C. Tang, H.J. Rosen, W.G. Golden, H. Seki, C.A. Brown, M.S. de Vries, Chem. Phys. Lett. 179(1–2), 181 (1991)

    Article  ADS  Google Scholar 

  30. A.B. Migdal, Sov. Phys. JETP 7, 996 (1958)

    MathSciNet  Google Scholar 

  31. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A.I. Lichtenstein, Phys. Rev. B 70, 195104 (2004)

    Article  ADS  Google Scholar 

  32. T. Fujiwara, S. Yamamoto, Y. Ishii, J. Phys. Soc. Jpn. 72(4), 777 (2003)

    Article  ADS  Google Scholar 

  33. Y. Nohara, S. Yamamoto, T. Fujiwara, Phys. Rev. B 79, 195110 (2009)

    Article  ADS  Google Scholar 

  34. F. Aryasetiawan, The LDA+DMFT Approach to Strongly Correlated Materials (Forschungszentrum Jülich GmbH, Jülich, 2011)

    Google Scholar 

  35. E. Sohmen, J. Fink, W. Krätschmer, Z. Phys. B Condens. Matter 86(1), 87 (1992)

    Article  ADS  Google Scholar 

  36. M.S. Golden, M. Knupfer, J. Fink, J.F. Armbruster, T.R. Cummins, H.A. Romberg, M. Roth, M. Sing, M. Schmidt, E. Sohmen, J. Phys. Condens. Matter 7(43), 8219 (1995)

    Article  ADS  Google Scholar 

  37. E. Sohmen, J. Fink, Phys. Rev. B 47, 14532 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nomura .

Appendix: Frequency Dependences of Partially Screened Coulomb Interactions

Appendix: Frequency Dependences of Partially Screened Coulomb Interactions

In this thesis, we assume that the partially screened Coulomb interactions are static (see Sect. 2.4.1.2). In order to check the validity of this assumption, we calculate the frequency dependences of the partially screened Coulomb interactions within the cRPA [31] for a representative material, fcc \(\mathrm{Cs}_3\mathrm{C}_{60}\) with \(V_{{\mathrm{C}_{60}}^{3-}} = 762\) \(\AA ^3\). We find that the assumption is justifiable because the frequency dependences are weak from zero frequency to a frequency well beyond the bandwidth.

We performed the calculation, following the conditions employed in Ref. [2]. We expanded the dielectric function in Eq. (2.33) in the plane waves with the energy cutoff of 7.5 Ry. The total number of bands considered in the calculation of the polarization function was set to 335 (120 occupied+3 target+212 unoccupied). The Brillouin-zone integral with respect to the wave vector was evaluated by the generalized tetrahedron method [32, 33]. We employed the Lorentzian smearing for the delta function with the full width at half maximum of 0.3 eV.

Fig. 3.7
figure 7

Frequency dependences of \(U (\omega )\), \(U' (\omega )\), and \(J_\mathrm{H} (\omega )\) for fcc \(\mathrm{Cs}_3\mathrm{C}_{60}\) with \(V_{{\mathrm{C}_{60}}^{3-}} = 762\) \(\AA ^3\). \(U(\omega )\), \(U'(\omega )\), and \(J_\mathrm{H}(\omega )\) are the intraorbital, interorbital, and exchange components of the cRPA Coulomb interactions, respectively. The frequency dependences for a wider frequency region are shown in the inset. For comparison, we also plot the frequency dependence of the phonon-mediated intraorbital and exchange-type interactions [\(U_\mathrm{ph}(\omega )\) and \(J_\mathrm{ph}(\omega )\), respectively]. Adapted from Nomura et al., Ref. [21]

Figure 3.7 shows the frequency dependences of \(U (\omega )\), \(U' (\omega )\), and \(J_\mathrm{H} (\omega )\) for fcc \(\mathrm{Cs}_3\mathrm{C}_{60}\) with \(V_{{\mathrm{C}_{60}}^{3-}} = 762\) \(\AA ^3\). We find that \(U (\omega )\), \(U' (\omega )\), and \(J_\mathrm{H} (\omega )\) are almost flat in the frequency region where the phonon-mediated interactions such as \(U_\mathrm{ph} (\omega )\) and \(J_\mathrm{ph}(\omega )\) are active (\( \omega \lesssim 0.2\) eV). Therefore, it can be justified to neglect the frequency dependences of the Coulomb interactions in investigating the subtle balance between the Coulomb and phonon-mediated interactions. Furthermore, the values of the cRPA interactions at a finite frequency are within 15 percent difference from that at \(\omega =0\) up to, at least, \(\omega = 3\) eV, which is larger than the bandwidth \(\sim \) 0.5 eV. This smallness of the frequency dependence suggests that the assumption of the static Coulomb interaction is valid.

Finally, we discuss the origin of small frequency dependence between \(\omega =0\) eV and \(\omega = 3 \) eV. In general, the values of the screened Coulomb interactions change drastically around the plasmon frequency [34]. In \(\mathrm{C}_{60}\) compounds, the most prominent plasmon peak is seen in the loss function around \(\omega = 27\) eV, which is related to the collective excitation involving all the valence electrons [3537]. We expect that this plasmon gives a substantial reduction of the Coulomb interactions from their bare values \(U=3.32\) eV, \(U'=3.12\) eV, and \(J_\mathrm{H} = 0.10\) eV, which are about 3-4 times larger than those at \(\omega =0\) (\(U=0.94\) eV, \(U'=0.87\) eV, and \(J_\mathrm{H} = 0.035\) eV) [2]. There also exists a less prominent plasmon peak around \(\omega = 6.5\) eV, which is relevant to the collective excitation of the \(\pi \) electrons [3537]. These plasmon frequencies (27 eV and 6.5 eV) are away from the frequency regime (\(\omega < 3\) eV) in Fig. 3.7. Therefore, we see only a small frequency dependence in Fig. 3.7.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nomura, Y. (2016). Application of cDFPT to Alkali-Doped Fullerides. In: Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1442-0_3

Download citation

Publish with us

Policies and ethics