Skip to main content

Modelling of a Rotating Active Thin-Walled Composite Beam System Subjected to High Electric Fields

  • Chapter
  • First Online:
Advanced Methods of Continuum Mechanics for Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 60))

Abstract

An electromechanical coupled theory is used to develop the equations of motion of a rotating thin-walled composite beam with surface bonded/embedded piezoelectric transducers. The higher order constitutive relations for the piezoceramic material are used to take into account the impact of a high electric field. In the mathematical model of the hybrid structure, the non-classical effects like material anisotropy, rotary inertia and transverse shear deformation as well as an arbitrary beam pitch angle are incorporated. Moreover, the model considers the hub mass moment of inertia and a non-constant rotating speed case. This approach results in an additional equation of motion for the hub sub-system and enhances the generality of the formulation. It is shown that final equations of motion of the hub–beam system are mutually coupled and form a nonlinear system of partial differential equations. Comparing to the purely mechanical model, the proposed electromechanical one introduces additional stiffness-type couplings between individual degrees of freedom of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arafa, M., Baz, A.: On the nonlinear behavior of piezoelectric actuators. J. Vib. Control 10(3), 387–398 (2004)

    Article  MATH  Google Scholar 

  • Birman, V.: Physically Nonlinear Behavior of Piezoelectric Actuators Subject to High Electric Fields. Research Triangle Park (NC) (2005)

    Google Scholar 

  • Brockmann, T.H.: Theory of Adaptive Fiber Composites: From Piezoelectric Material Behavior to Dynamics of Rotating Structures, Solid Mechanics and its Applications, vol. 161. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  • Chattopadhyay, A., Gu, H., Liu, Q.: Modeling of smart composite box beams with nonlinear induced strain. Compos. Part B: Eng. 30(6), 603–612 (1999)

    Article  Google Scholar 

  • Detwiler, D.T., Shen, M.H., Venkayya, V.B.: Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors. Finite Elem. Anal. Des. 20(2), 87–100 (1995)

    Article  MATH  Google Scholar 

  • Georgiades, F., Latalski, J., Warmiński, J.: Equations of motion of rotating composite beams with a nonconstant rotation speed and an arbitrary preset angle. Meccanica 49(8), 1833–1858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, D.A.: Review: nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36(19), 4575–4601 (2001)

    Article  Google Scholar 

  • Joshi, S.P.: Non-linear constitutive relations for piezoceramic materials. Smart Mater. Struct. 1(1), 80–83 (1992)

    Article  Google Scholar 

  • Latalski, J., Warmiński, J., Rega, G.: Bending-twisting vibrations of a rotating hub–thin-walled composite beam system. Math. Mech. Solids (2016). Accessed 3 Mar 2016. doi: 10.1177/1081286516629768

    Google Scholar 

  • Li, X., Jiang, W., Shui, Y.: Coupled mode theory for nonlinear piezoelectric plate vibrations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 800–805 (1998)

    Article  Google Scholar 

  • Librescu, L., Song, O.: Thin-Walled Composite Beams: Theory and Application. Springer, Dordrecht and the Netherlands (2006)

    MATH  Google Scholar 

  • Maugin, G.A.: Nonlinear Electromechanical Effects and Applications. Series in theoretical and applied mechanics. World Scientific Publishing, Singapore (1985)

    Google Scholar 

  • Mayo, J., García-Vallejo, D., Domínguez, J.: Study of the geometric stiffening effect: comparison of different formulations. Multibody Syst. Dyn. 11(4), 321–341 (2004)

    Article  MATH  Google Scholar 

  • Mitchell, J.A., Reddy, J.N.: A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids Struct. 32(16), 2345–2367 (1995)

    Article  MATH  Google Scholar 

  • Priya, S., Viehland, D., Carazo, A.V., Ryu, J., Uchino, K.: High-power resonant measurements of piezoelectric materials: Importance of elastic nonlinearities. J. Appl. Phys. 90(3), 1469 (2001)

    Article  Google Scholar 

  • Samal, M.K., Seshu, P., Parashar, S., Uv, Wagner, Hagedorn, P., Dutta, B.K., Kushwaha, H.S.: A finite element model for nonlinear behaviour of piezoceramics under weak electric fields. Finite Elem. Anal. Des. 41(15), 1464–1480 (2005)

    Article  Google Scholar 

  • Silva, L.L., Savi, M.A., Monteiro, Paulo C.C., Netto, T.A.: On the nonlinear behavior of the piezoelectric coupling on vibration-based energy harvesters. Shock Vib. 2015, 1–15 (2015)

    Article  Google Scholar 

  • Song, O., Kim, J.B., Librescu, L.: Synergistic implications of tailoring and adaptive materials technology on vibration control of anisotropic thin-walled beams. Int. J. Eng. Sci. 39(1), 79–94 (2001)

    Article  Google Scholar 

  • Thornburgh, R., Chattopadhyay, A., Ghoshal, A.: Transient vibration of smart structures using a coupled piezoelectric-mechanical theory. J. Sound Vib. 274(1–2), 53–72 (2004)

    Article  Google Scholar 

  • Tiersten, H.F.: Electroelastic equations for electroded thin plates subject to large driving voltages. J. Appl. Phys. 74(5), 3389–3393 (1993)

    Article  Google Scholar 

  • Wagner, U.v., Hagedorn, P.: Nonlinear effects of piezoceramics excited by weak electric fields. Nonlinear Dyn. 31(2), 133–149 (2003)

    Google Scholar 

  • Williams, R.B.: Nonlinear mechanical and actuation characterization of piezoceramic fiber composites: Ph.d. (2004)

    Google Scholar 

  • Yang, J.s.: Equations for the extension and flexure ofelectroelastic plates under strong electric fields. Int. J. Solids Struct. 36(21), 3171–3192 (1999)

    Google Scholar 

  • Yang, J.s., Chen, Z., Hu, Y., Jiang, S., Guo, S.: Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(4), 877–881 (2007)

    Google Scholar 

  • Yao, L.Q., Zhang, J.G., Lu, L., Lai, M.O.: Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field. Sens. Actuators A: Phys. 115(1), 168–175 (2004)

    Article  Google Scholar 

  • Zhou, X.U., Chattopadhyay, A., Thornburgh, R.: Analysis of piezoelectric smart composites using a coupled piezoelectric-mechanical model. J. Intell. Mater. Syst. Struct. 11(3), 169–179 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The work is financially supported by grant DEC-2012/07/B/ST8/03931 from the Polish National Science Centre. Author would also like to thank Professor Jerzy Warmiński for his comments and the valuable discussions while preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Latalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Latalski, J. (2016). Modelling of a Rotating Active Thin-Walled Composite Beam System Subjected to High Electric Fields. In: Naumenko, K., Aßmus, M. (eds) Advanced Methods of Continuum Mechanics for Materials and Structures. Advanced Structured Materials, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-0959-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0959-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0958-7

  • Online ISBN: 978-981-10-0959-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics